This Is the
second lecture
of Chapter 6

A B N g e ———

Com‘pute‘ ”
Organization

rchit cture\ ,

Linda Null
Julia Lobur

L]

- e) — e 7
T FerEy == g gosgy

4 -

*

n ‘/» h ‘6"‘4. ‘ “ ¢
s Ba’ﬁettd_earnlng? LLCan Ascend Learning Company
! g
» © www.jblearning.com
‘ v ot » + . %

Y

e

Quick review of last lecture

e Types of Memory
— DRAM, SRAM, ROM

e The Memory Hierarchy
— Registers, Cache, Main Memory, Virtual Memory
— Data transfer to/from registers in words
— Data transfer between Cache and Main Memory in blocks
— Terminologies:
e hit, miss, hit rate, miss rate, hit time, miss penalty
— Principle of locality
e Cache Placement Schemes
— Direct Mapping

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory

With direct mapped cache
consisting of 4 blocks of cache,

block X of main memory maps
to cache block Y = X mod 4.

Cache
00

01
10

1

Block Block
0 0
Block Block
1 1
Block Block
2 2
Block Block
3 3

Block
4
Block
5
Block
6
Block
7

Main memory
000

001
010
011
100
101
110

11

8 memory blocks to 4 cache blocks

v
A

T | M

B—"

Tag Block Offset

—

Memory size = 2N

Bits in main memory address —————>1

N

»
»

of Cache blocks = 2M
Block size = 2B

T=N-M-B

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (6 of 45)

e Example 6.1: Consider a byte- Cache Main memory
addr§s§able main memory Block 0 1+— Block 0
consisting of 4 blocks, and a cache -~ B
with 2 blocks, where each block is 4 o° >
bytes Block 2

e This means Block 0 and 2 of main Block 3

memory map to Block O of cache,
and Blocks 1 and 3 of main
memory map to Block 1 of cache.
e Using the tag, block, and offset
fields, we can see how main
memory maps to cache as follows.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (7 of 45)

e Example 6.1: Cont’d. Consider a byte- Cache Main memory
addressable main memory consisting
of 4 blocks, and a cache with 2 blocks,
where each block is 4 bytes. Block 1

e First, we need to determine the

address format for mapping.
— Main memory address has 4 bits
because there are a total of 2= 16

Block 0
Block 1
Block 2
Block 3

Block 0

Vi

bytes

— Each block is 4 bytes, so the offset field 1 1 2
must contain 2 bits; tag | block offset

— There are 2 blocks in cache, so the - 4 .
block field must contain 1 bit; Main memory format

— This leaves 1 bit for the tag.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (8 of 45)

e Example 6.1: Cont’d.

— Suppose we need to access

main memory address 3,
(0x0011 in binary). If we
partition 0x0011 using the
address format from Fig. a, we
get Fig. b.

Thus, the main memory
address 0x0011 maps to cache
block O.

Figure c shows this mapping,
along with the tag that is also
stored with the data.

Fig. a

Fig. b

Fig. c

The next slide illustrates another mapping.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

1 1 2
tag block offset
4

Main memory format

0 0 11

tag block offset

The address 0011 partitioned into fields

Cache Tag
0

Main memory
Block 0 —
0011 Tag
Block 1
Block 2

Block 3

Mapping of block containing
Address 0011 = 0x3

6.4 Cache Memory (9 of 45)

0 0 11 1 0 10
tag block offset tag block offset
The address 0011 partitioned into fields The address 1010 partitioned into fields
Mai Cach T
ain memory che ":ng Main memory Cache Tag
1]
Block 0 >
0011 Tag Block 0 g
])
Block 1
Block 1
Block 2 Block 2 lo10
Block 3 Block 3
Mapping of block containing Mabpi .
- pping of Block Containing
Address 0011 = 0x3 Address 1010 = OxA

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (10 of 45)

Example 6.2: Assume a byte-addressable memory consists
of 214 bytes, cache has 16 = 24 blocks, and each block has
8 = 23 bytes. Hl4

— The number of memory blocks are: 2°
— Each main memory address requires 14 bits.

— The offset field in the rightmost contains 3 bits.

— The block field consists of the middle 4 bits to select a

specific block in cache.
— The remaining 7 bits make up the tag field.

2]|

7 bits 4 bits 3 bits

Tag Block Offset

A

14 bits >

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (11 of 45)

e Example 6.3: Assume a byte-addressable memory
consisting of 16 = 2% bytes divided into 8 blocks.

Cache contains 4 = 22 blocks. We know:

— A memory address has 4 bits.

— The 4-bit memory address is divided into the fields
below.

1 bit 2 bits 1 bit

Tag Block Offset

A
Y

4 bits

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (12 of 45)

® Example 6.3: Cont’d. The s 2ote LLL
Mmap pi Ng for memo ry '1“11‘9) 0'1""":";3 ("“:‘e‘)
references is shown below: - i g

Main Memory Maps To Cache
(000) Block 0 (addresses 0x0, 0x1) » Block 0 (00)
(001) Block 1 (addresses 0x2, 0x3) > Block 1 (01)
(010) Block 2 (addresses 0x4, 0x5) » Block 2 (10)
(011) Block 3 (addresses 0x6, 0X7) » Block 3 (11)
(100) Block 4 (addresses 0x8, 0x9) » Block 0 (00)
(101) Block 5 (addresses 0xA, 0xB) » Block 1 (01)
(110) Block 6 (addresses 0xC, 0xD) » Block 2 (10)
(111) Block 7 (addresses OxE, 0xF) » Block 3 (11)

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (13 of 45)

e Example 6.4: Consider 16-bit memory addresses and 64
blocks of cache where each block contains 8 bytes. We
have:

— 3 bits for the offset
— 6 bits for the block
— 7 bits for the tag

e A memory reference for 0x0404 maps as follows:

0x0404 = 0000010 000000 100

Tag Block Offset

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (14 of 45)

e Insummary, direct mapped cache '4_ . ‘ — M pas 2
maps main memory blocks in a
modular fashion to cache blocks. Tag Block Offset
The mapping depends on: S _
— The number of bits in the main - N :

memory address (how many
addresses exist in main memory).

_ Memory size = 2N
— The number of blocks are in cache

(which determines the size of the # of Cache blocks = 2M
block field).
— How many addresses (either bytes Block size = 2B

or words) are in a block (which
determines the size of the offset
field)?

T=N-M-B

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (15 of 45)

Suppose instead of placing memory blocks in
specific cache locations based on memory

adc
cac

ress, we could allow a block to go anywhere in
ne.

In t

nis way, cache would have to fill up before any

blocks are evicted.
This is how fully associative cache works.

A memory address is partitioned into only two
fields: the tag and the offset.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (16 of 45)

e Suppose, as before, we have 14-bit memory addresses
and a cache with 16 blocks, each block of size 8. The field
format of a memory reference is:

11 bits 3 bits

Tag Offset

- 14 bits >

e When the cache is searched, all tags are searched in
parallel to retrieve the data quickly.
e This requires special, costly hardware.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (17 of 45)

You will recall that direct mapped cache evicts a
block whenever another memory reference
needs that block.

With fully associative cache, we have no such
mapping, thus we must devise an algorithm to
determine which block to evict from the cache.
The block that is evicted is the victim block.
There are a number of ways to pick a victim, we
will discuss them shortly.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (18 of 45)

Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

An N-way set associative cache mapping is like direct
mapped cache in that a memory reference maps to a
particular location in cache.

Unlike direct mapped cache, a memory reference maps to
a set of several cache blocks, similar to the way in which
fully associative cache works.

Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of cache
slots.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (19 of 45)

e The number of cache sto L0 Bosko | Bookt [
blocks per set in set sr (2| ooz | ook
associative cache varies suz [0 mosks | moks
according to overall A Logicvew o 2:vayset asocite ache
system design. AT —

— For example, a 2-way set i e B Ak
associative cache can be I
conceptualized as shown w1 [
in the schematic below. I —

— Each set contains two — stz
different memory blocks. o

B Linear view of 2-way set associative cache

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (20 of 45)

* |n set associative cache mapping, a memory
reference is divided into three fields: tag, set, and

offset.

« As with direct-mapped cache, the offset field chooses
the byte within the cache block, and the tag field
uniquely identifies the memory address.

* The set field determines the set to which the memory
block maps.

Tag Set Offset

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

