
Chapter 6

Memory (B)

This is the

second lecture

of Chapter 6

Quick review of last lecture

• Types of Memory
– DRAM, SRAM, ROM

• The Memory Hierarchy
– Registers, Cache, Main Memory, Virtual Memory

– Data transfer to/from registers in words

– Data transfer between Cache and Main Memory in blocks

– Terminologies:
• hit, miss, hit rate, miss rate, hit time, miss penalty

– Principle of locality

• Cache Placement Schemes
– Direct Mapping

6.4 Cache Memory

With direct mapped cache

consisting of 4 blocks of cache,

block X of main memory maps

to cache block Y = X mod 4.

Memory size = 2N

of Cache blocks = 2M

Block size = 2B

T M B

N

T = N – M – B

6.4 Cache Memory (6 of 45)

• Example 6.1: Consider a byte-
addressable main memory
consisting of 4 blocks, and a cache
with 2 blocks, where each block is 4
bytes.

• This means Block 0 and 2 of main
memory map to Block 0 of cache,
and Blocks 1 and 3 of main
memory map to Block 1 of cache.

• Using the tag, block, and offset
fields, we can see how main
memory maps to cache as follows.

6.4 Cache Memory (7 of 45)

• Example 6.1: Cont’d. Consider a byte-
addressable main memory consisting
of 4 blocks, and a cache with 2 blocks,
where each block is 4 bytes.

• First, we need to determine the
address format for mapping.

– Main memory address has 4 bits
because there are a total of 24 = 16
bytes

– Each block is 4 bytes, so the offset field
must contain 2 bits;

– There are 2 blocks in cache, so the
block field must contain 1 bit;

– This leaves 1 bit for the tag.

6.4 Cache Memory (8 of 45)

• Example 6.1: Cont’d.
– Suppose we need to access

main memory address 316

(0x0011 in binary). If we
partition 0x0011 using the
address format from Fig. a, we
get Fig. b.

– Thus, the main memory
address 0x0011 maps to cache
block 0.

– Figure c shows this mapping,
along with the tag that is also
stored with the data.

The next slide illustrates another mapping.

Fig. a

Fig. b

Fig. c

6.4 Cache Memory (9 of 45)

6.4 Cache Memory (10 of 45)

• Example 6.2: Assume a byte-addressable memory consists
of 214 bytes, cache has 16 = 24 blocks, and each block has
8 = 23 bytes.
– The number of memory blocks are:
– Each main memory address requires 14 bits.
– The offset field in the rightmost contains 3 bits.
– The block field consists of the middle 4 bits to select a

specific block in cache.
– The remaining 7 bits make up the tag field.

6.4 Cache Memory (11 of 45)

• Example 6.3: Assume a byte-addressable memory
consisting of 16 = 24 bytes divided into 8 blocks.
Cache contains 4 = 22 blocks. We know:
– A memory address has 4 bits.
– The 4-bit memory address is divided into the fields

below.

6.4 Cache Memory (12 of 45)

• Example 6.3: Cont’d. The
mapping for memory
references is shown below:

6.4 Cache Memory (13 of 45)

• Example 6.4: Consider 16-bit memory addresses and 64
blocks of cache where each block contains 8 bytes. We
have:
– 3 bits for the offset

– 6 bits for the block

– 7 bits for the tag

• A memory reference for 0x0404 maps as follows:

6.4 Cache Memory (14 of 45)

• In summary, direct mapped cache
maps main memory blocks in a
modular fashion to cache blocks.
The mapping depends on:
– The number of bits in the main

memory address (how many
addresses exist in main memory).

– The number of blocks are in cache
(which determines the size of the
block field).

– How many addresses (either bytes
or words) are in a block (which
determines the size of the offset
field)?

Memory size = 2N

of Cache blocks = 2M

Block size = 2B

T M B

N

T = N – M – B

6.4 Cache Memory (15 of 45)

• Suppose instead of placing memory blocks in
specific cache locations based on memory
address, we could allow a block to go anywhere in
cache.

• In this way, cache would have to fill up before any
blocks are evicted.

• This is how fully associative cache works.

• A memory address is partitioned into only two
fields: the tag and the offset.

6.4 Cache Memory (16 of 45)

• Suppose, as before, we have 14-bit memory addresses
and a cache with 16 blocks, each block of size 8. The field
format of a memory reference is:

• When the cache is searched, all tags are searched in
parallel to retrieve the data quickly.

• This requires special, costly hardware.

6.4 Cache Memory (17 of 45)

• You will recall that direct mapped cache evicts a
block whenever another memory reference
needs that block.

• With fully associative cache, we have no such
mapping, thus we must devise an algorithm to
determine which block to evict from the cache.

• The block that is evicted is the victim block.

• There are a number of ways to pick a victim, we
will discuss them shortly.

6.4 Cache Memory (18 of 45)

• Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

• An N-way set associative cache mapping is like direct
mapped cache in that a memory reference maps to a
particular location in cache.

• Unlike direct mapped cache, a memory reference maps to
a set of several cache blocks, similar to the way in which
fully associative cache works.

• Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of cache
slots.

6.4 Cache Memory (19 of 45)

• The number of cache
blocks per set in set
associative cache varies
according to overall
system design.
– For example, a 2-way set

associative cache can be
conceptualized as shown
in the schematic below.

– Each set contains two
different memory blocks.

6.4 Cache Memory (20 of 45)

• In set associative cache mapping, a memory

reference is divided into three fields: tag, set, and

offset.

• As with direct-mapped cache, the offset field chooses

the byte within the cache block, and the tag field

uniquely identifies the memory address.

• The set field determines the set to which the memory

block maps.

