
Chapter 6

Memory (A)

This is the first

lecture of

Chapter 6

Objectives

• Master the concepts of hierarchical memory
organization.

• Understand how each level of memory
contributes to system performance, and how the
performance is measured.

• Master the concepts behind cache memory,
virtual memory, memory segmentation, paging,
and address translation.

6.1 Introduction

• Memory lies at the heart of the stored-program
computer.

• In previous chapters, we studied the components
from which memory is built and the ways in
which memory is accessed by various ISAs.

• In this chapter, we focus on memory
organization. A clear understanding of these ideas
is essential for the analysis of system
performance.

6.2 Types of Memory (1 of 2)

• There are two kinds of main memory: random access
memory (RAM) and read-only-memory (ROM).

• There are two types of RAM: dynamic RAM (DRAM)
and static RAM (SRAM).

• DRAM consists of capacitors that slowly leak their
charge over time. Thus, they must be refreshed every
few milliseconds to prevent data loss.

• DRAM is “cheap” memory owing to its simple design.

6.2 Types of Memory (2 of 2)

• SRAM consists of circuits similar to the D flip-flop that
we studied in Chapter 3.

• SRAM is very fast memory and it doesn’t need to be
refreshed like DRAM does. It is used to build cache
memory, which we will discuss in detail later.

• ROM also does not need to be refreshed, either. In
fact, it needs very little charge to retain its memory.

• ROM is used to store permanent, or semi-permanent
data that persists even while the system is turned off.

6.3 The Memory Hierarchy (1 of 6)

• Generally speaking, faster memory is more expensive
than slower memory.

• To provide the best performance at the lowest cost,
memory is organized in a hierarchical fashion.

• Small, fast storage elements are kept in the CPU,
larger, slower main memory is accessed through the
data bus.

• Larger, (almost) permanent storage in the form of
disk and tape drives is still further from the CPU.

6.3 The Memory Hierarchy (2 of 6)

• This storage organization can be thought of as a pyramid:

6.3 The Memory Hierarchy (3 of 6)

• We are most interested in the memory hierarchy that
involves registers, cache, main memory, and virtual
memory.

• Registers are storage locations available on the
processor itself.

• Virtual memory is typically implemented using a hard
drive; it extends the address space from RAM to the
hard drive.

• Virtual memory provides more space: Cache memory
provides speed.

6.3 The Memory Hierarchy (4 of 6)

• To access a particular piece of data, the CPU first
sends a request to its nearest memory, usually
cache.

• If the data is not in cache, then main memory is
queried. If the data is not in main memory, then
the request goes to disk.

• Once the data is located, then the data and a
number of its nearby data elements are fetched
into cache memory.

6.3 The Memory Hierarchy (5 of 6)

• This leads us to some definitions.
– A hit is when data is found at a given memory level.
– A miss is when it is not found.
– The hit rate is the percentage of time data is found at a

given memory level.
– The miss rate is the percentage of time it is not.
– Miss rate = 1 – hit rate.
– The hit time is the time required to access data at a given

memory level.
– The miss penalty is the time required to process a miss,

including the time that it takes to replace a block of
memory plus the time it takes to deliver the data to the
processor.

6.3 The Memory Hierarchy (6 of 6)

• An entire block of data is copied after a hit
because the principle of locality tells us that once
a byte is accessed, it’s likely that a nearby data
element will be needed soon.

• There are three forms of locality:
– Temporal locality: Recently-accessed data elements

tend to be accessed again.

– Spatial locality: Accesses tend to cluster.

– Sequential locality: Instructions tend to be accessed
sequentially.

6.4 Cache Memory (1 of 45)

• The purpose of cache memory is to speed up accesses
by storing recently used data closer to the CPU,
instead of storing it in main memory.

• Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

• Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

• Because of this, a single large cache memory isn’t
always desirable—it takes longer to search.

6.4 Cache Memory (2 of 45)

• The simplest cache mapping scheme is direct
mapped cache.

• In a direct mapped cache consisting of N blocks of
cache, block X of main memory maps to cache
block Y = X mod N.

• Thus, if we have 10 blocks of cache, block 7 of
cache may hold blocks 7, 17, 27, 37, . . . of main
memory.

The next slide illustrates this mapping concept.

6.4 Cache Memory (3 of 45)

• With direct mapped cache consisting of 4 blocks
of cache, block X of main memory maps to cache
block Y = X mod 4.

6.4 Cache Memory (4 of 45)

• A larger example.

6.4 Cache Memory (5 of 45)

• To perform direct mapping, the binary main memory
address is partitioned into the fields shown below.
– The offset field uniquely identifies an address within a

specific block.

– The block field selects a unique block of cache.

– The tag field is whatever is left over.

– The sizes of these fields are
determined by characteristics
of both memory and cache.

6.4 Cache Memory (6 of 45)

• Example 6.1: Consider a byte-addressable main
memory consisting of 4 blocks, and a cache with 2
blocks, where each block is 4 bytes.

• This means Block 0 and 2 of main memory map to
Block 0 of cache, and Blocks 1 and 3 of main
memory map to Block 1 of cache.

• Using the tag, block, and offset fields, we can see
how main memory maps to cache as follows.

