This Is the first
lecture of
Chapter 6

A B N g e ———

Com‘pute‘ ”
Organization

rchit cture\ ,

Linda Null
Julia Lobur

L]

- e ) — e 7
T FerEy == g gosgy

4 -

*

n ‘/» h ‘6"‘4. ‘ “ ¢
s Ba’ﬁettd_earnlng? LLCan Ascend Learning Company
! g
» © www.jblearning.com
‘ v ot » + . %

Y

e



Objectives

e Master the concepts of hierarchical memory
organization.

e Understand how each level of memory
contributes to system performance, and how the
performance is measured.

e Master the concepts behind cache memory,
virtual memory, memory segmentation, paging,
and address translation.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.1 Introduction

e Memory lies at the heart of the stored-program
computer.

e |n previous chapters, we studied the components
from which memory is built and the ways in
which memory is accessed by various ISAs.

e |n this chapter, we focus on memory
organization. A clear understanding of these ideas
is essential for the analysis of system
performance.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.2 Types of Memory (1 of 2)

There are two kinds of main memory: random access
memory (RAM) and read-only-memory (ROM).

There are two types of RAM: dynamic RAM (DRAM)
and static RAM (SRAM).

DRAM consists of capacitors that slowly leak their
charge over time. Thus, they must be refreshed every
few milliseconds to prevent data loss.

DRAM is “cheap” memory owing to its simple design.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.2 Types of Memory (2 of 2)

SRAM consists of circuits similar to the D flip-flop that
we studied in Chapter 3.

SRAM is very fast memory and it doesn’t need to be
refreshed like DRAM does. It is used to build cache
memory, which we will discuss in detail later.

ROM also does not need to be refreshed, either. In
fact, it needs very little charge to retain its memory.

ROM is used to store permanent, or semi-permanent
data that persists even while the system is turned off.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.3 The Memory Hierarchy (1 of 6)

Generally speaking, faster memory is more expensive
than slower memory.

To provide the best performance at the lowest cost,
memory is organized in a hierarchical fashion.

Small, fast storage elements are kept in the CPU,
larger, slower main memory is accessed through the
data bus.

Larger, (almost) permanent storage in the form of
disk and tape drives is still further from the CPU.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.3 The Memory Hierarchy (2 of 6)

e This storage organization can be thought of as a pyramid:

Smaller
More costly

Access
times

0.3ns—2ns

Reg iSters
Level 1 ¢4, he

_______ Leve 2 cachg

_______ Maiﬂ Mmem ory
——————— Solid-state gy
_______ Ei .
Ixed rigjqy disk ) r§\
O . & Less costly
_______ Plical disks (jukeboxes) A
——————— Magnetic
tapeS T P
(robotic libra ries) &

us
12ms—40ms B flash drives

R
€Movap)e harg driveg

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.3 The Memory Hierarchy (3 of 6)

We are most interested in the memory hierarchy that
involves registers, cache, main memory, and virtual
memory.

Registers are storage locations available on the
processor itself.

Virtual memory is typically implemented using a hard
drive; it extends the address space from RAM to the
hard drive.

Virtual memory provides more space: Cache memory
provides speed.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.3 The Memory Hierarchy (4 of 6)

e To access a particular piece of data, the CPU first
sends a request to its nearest memory, usually
cache.

e |f the datais not in cache, then main memory is
gueried. If the data is not in main memory, then
the request goes to disk.

e Once the data is located, then the data and a

number of its nearby data elements are fetched
into cache memory.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.3 The Memory Hierarchy (5 of 6)

e This leads us to some definitions.
— A hitis when data is found at a given memory level.
— A miss is when it is not found.

— The hit rate is the percentage of time data is found at a
given memory level.

— The miss rate is the percentage of time it is not.
— Miss rate = 1 — hit rate.

— The hit time is the time required to access data at a given
memory level.

— The miss penalty is the time required to process a miss,
including the time that it takes to replace a block of
memory plus the time it takes to deliver the data to the
processor.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.3 The Memory Hierarchy (6 of 6)

e An entire block of data is copied after a hit
because the principle of locality tells us that once

a byte is accessed, it’s likely that a nearby data
element will be needed soon.

e There are three forms of locality:

— Temporal locality: Recently-accessed data elements
tend to be accessed again.

— Spatial locality: Accesses tend to cluster.

— Sequential locality: Instructions tend to be accessed
sequentially.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.4 Cache Memory (1 of 45)

The purpose of cache memory is to speed up accesses
by storing recently used data closer to the CPU,
instead of storing it in main memory.

Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

Because of this, a single large cache memory isn’t
always desirable—it takes longer to search.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.4 Cache Memory (2 of 45)

e The simplest cache mapping scheme is direct
mapped cache.

e |n a direct mapped cache consisting of N blocks of

cache, block X of main memory maps to cache
block Y =X mod N.

e Thus, if we have 10 blocks of cache, block 7 of
cache may hold blocks 7, 17, 27, 37, . .. of main
memory.

The next slide illustrates this mapping concepit.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.4 Cache Memory (3 of 45)

e With direct mapped cache consisting of 4 blocks
of cache, block X of main memory maps to cache

block Y = X mod 4.

Cache Block Block
oc ocl

0 o ¢ 0
Block Block

0 4 1
Block Block

10 o 2
Block Block
3 3
Block

4

Block

5

Block

6

Block

7

Main memory
000

001
010
011
100
101
110

m

8 memory blocks to 4 cache blocks

© Nicemon key/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company

www.jblearning.com



6.4 Cache Memory (4 of 45)

CBTCh: Siook Main memory
P 5\\ oo | 0000
* Alarger example. s i o o
Block Block 0010

2 A o2

Blgck a\‘\y Block 0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

16 memory blocks to 4 cache blocks

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.4 Cache Memory (5 of 45)

e To perform direct mapping, the binary main memory
address is partitioned into the fields shown below.

— The offset field uniquely identifies an address within a
specific block.

— The block field selects a unique block of cache.
— The tag field is whatever is left over.

Tag Block Offset

<«—Bits in main memory address ————>

— The sizes of these fields are
determined by characteristics
of both memory and cache.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



6.4 Cache Memory (6 of 45)

e Example 6.1: Consider a byte-addressable main
memory consisting of 4 blocks, and a cache with 2
blocks, where each block is 4 bytes.

e This means Block 0 and 2 of main memory map to
Block O of cache, and Blocks 1 and 3 of main
memory map to Block 1 of cache.

e Using the tag, block, and offset fields, we can see
how main memory maps to cache as follows.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com



