
Chapter 5

A Closer Look at

Instruction Set

Architectures

This is the

third lecture of

Chapter 5

Quick review of last lecture

• Evaluate expression using different instruction
formats

• Expanding opcodes

• Instruction type

5.4 Addressing (1 of 6)

• Addressing modes specify where an operand
is located.

• They can specify a constant, a register, or a
memory location.

• The actual location of an operand is its
effective address.

• Certain addressing modes allow us to
determine the address of an operand
dynamically.

5.4 Addressing (2 of 6)

• Immediate addressing is where the data is part of the
instruction.

• Direct addressing is where the address of the data is
given in the instruction.

• Register addressing is where the data is located in a
register.

• Indirect addressing gives the address of the address of
the data in the instruction.

• Register indirect addressing uses a register to store the
address of the address of the data.

5.4 Addressing (3 of 6)

• Indexed addressing uses a register (implicitly or
explicitly) as an offset, which is added to the
address in the operand to determine the
effective address of the data.

• Based addressing is similar except that a base
register is used instead of an index register.

• The difference between these two is that an
index register holds an offset relative to the
address given in the instruction, a base register
holds a base address where the address field
represents a displacement from this base.

5.4 Addressing (4 of 6)

• In stack addressing the operand is assumed to be
on top of the stack.

• There are many variations to these addressing
modes including:
– Indirect indexed.
– Base/offset.
– Self-relative.
– Auto increment—decrement.

• We won’t cover these in detail.

5.4 Addressing (5 of 6)

• For the instruction shown, what value is loaded
into the accumulator for each addressing mode?

5.4 Addressing (6 of 6)

• For the instruction shown, what value is loaded
into the accumulator for each addressing mode?

0x500

5.5 Instruction Pipelining (1 of 7)

• Some CPUs divide the fetch-decode-execute cycle
into smaller steps.

• These smaller steps can often be executed in
parallel to increase throughput.

• Such parallel execution is called instruction
pipelining.

• Instruction pipelining provides for instruction
level parallelism (ILP)

5.5 Instruction Pipelining (2 of 7)

• Suppose a fetch-decode-execute cycle were broken into the
following smaller steps:
1. Fetch instruction
2. Decode opcode
3. Calculate effective address of operands
4. Fetch operands
5. Execute instruction
6. Store result

• Suppose we have a six-stage pipeline. S1 fetches the
instruction, S2 decodes it, S3 determines the address of the
operands, S4 fetches them, S5 executes the instruction, and S6
stores the result.

5.5 Instruction Pipelining (3 of 7)

• For every clock cycle, one small step is carried out,
and the stages are overlapped.

S1. Fetch instruction.

S2. Decode opcode.

S3. Calculate effective

address of operands.

S4. Fetch operands.

S5. Execute.

S6. Store result.

• The theoretical speedup offered by a pipeline can be
determined as follows:
– Let tp be the time per stage. Each instruction

represents a task, T, in the pipeline.

– The first task (instruction) requires k tp time to
complete in a k-stage pipeline. The remaining (n – 1)
tasks emerge from the pipeline one per cycle. So the
total time to complete the remaining tasks is (n – 1)tp.

– Thus, to complete n tasks using a k-stage pipeline
requires:

(k tp) + (n – 1)tp = (k + n – 1)tp.

5.5 Instruction Pipelining (4 of 7)

5.5 Instruction Pipelining (5 of 7)

• If we take the time required to complete n tasks
without a pipeline and divide it by the time it takes to
complete n tasks using a pipeline, we find:

• If we take the limit as n approaches infinity,
(k + n – 1) approaches n, which results in a theoretical
speedup of:

5.5 Instruction Pipelining (6 of 7)

• Our neat equations take a number of things for
granted.

• First, we have to assume that the architecture
supports fetching instructions and data in
parallel.

• Second, we assume that the pipeline can be kept
filled at all times. This is not always the case.
Pipeline hazards arise that cause pipeline conflicts
and stalls.

5.5 Instruction Pipelining (7 of 7)

• An instruction pipeline may stall, or be flushed for
any of the following reasons:
– Resource conflicts.

– Data dependencies.

– Conditional branching.

• Measures can be taken at the software level as
well as at the hardware level to reduce the effects
of these hazards, but they cannot be totally
eliminated.

5.6 Real-World Examples of ISAs
(1 of 10)

• We return briefly to the Intel and MIPS
architectures from the last chapter, using some of
the ideas introduced in this chapter.

• Intel introduced pipelining to their processor line
with its Pentium chip.

• The first Pentium had two 5-stage pipelines. Each
subsequent Pentium processor had a longer
pipeline than its predecessor with the Pentium IV
having a 24-stage pipeline.

• The Itanium (IA-64) has only a 10-stage pipeline.

