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Quick review of last lecture 

• Evaluate expression using different instruction 
formats

• Expanding opcodes 

• Instruction type



5.4 Addressing (1 of 6)

• Addressing modes specify where an operand 
is located.

• They can specify a constant, a register, or a 
memory location.

• The actual location of an operand is its 
effective address.

• Certain addressing modes allow us to 
determine the address of an operand 
dynamically.



5.4 Addressing (2 of 6)

• Immediate addressing is where the data is part of the 
instruction.

• Direct addressing is where the address of the data is 
given in the instruction.

• Register addressing is where the data is located in a 
register.

• Indirect addressing gives the address of the address of 
the data in the instruction.

• Register indirect addressing uses a register to store the 
address of the address of the data.



5.4 Addressing (3 of 6)

• Indexed addressing uses a register (implicitly or 
explicitly) as an offset, which is added to the 
address in the operand to determine the 
effective address of the data.

• Based addressing is similar except that a base 
register is used instead of an index register.

• The difference between these two is that an 
index register holds an offset relative to the 
address given in the instruction, a base register 
holds a base address where the address field 
represents a displacement from this base.



5.4 Addressing (4 of 6)

• In stack addressing the operand is assumed to be 
on top of the stack.

• There are many variations to these addressing 
modes including:
– Indirect indexed.
– Base/offset.
– Self-relative.
– Auto increment—decrement.

• We won’t cover these in detail.



5.4 Addressing (5 of 6)

• For the instruction shown, what value is loaded 
into the accumulator for each addressing mode?



5.4 Addressing (6 of 6)

• For the instruction shown, what value is loaded 
into the accumulator for each addressing mode?

0x500



5.5 Instruction Pipelining (1 of 7)

• Some CPUs divide the fetch-decode-execute cycle 
into smaller steps.

• These smaller steps can often be executed in 
parallel to increase throughput.

• Such parallel execution is called instruction 
pipelining.

• Instruction pipelining provides for instruction 
level parallelism (ILP)



5.5 Instruction Pipelining (2 of 7)

• Suppose a fetch-decode-execute cycle were broken into the 
following smaller steps:
1. Fetch instruction
2. Decode opcode
3. Calculate effective address of operands
4. Fetch operands
5. Execute instruction
6. Store result

• Suppose we have a six-stage pipeline. S1 fetches the 
instruction, S2 decodes it, S3 determines the address of the 
operands, S4 fetches them, S5 executes the instruction, and S6 
stores the result.



5.5 Instruction Pipelining (3 of 7)

• For every clock cycle, one small step is carried out, 
and the stages are overlapped.

S1. Fetch instruction.

S2. Decode opcode.

S3. Calculate effective

address of operands.

S4. Fetch operands.

S5. Execute.

S6. Store result.



• The theoretical speedup offered by a pipeline can be 
determined as follows:
– Let tp be the time per stage. Each instruction 

represents a task, T, in the pipeline.

– The first task (instruction) requires k  tp time to 
complete in a k-stage pipeline. The remaining (n – 1) 
tasks emerge from the pipeline one per cycle. So the 
total time to complete the remaining tasks is (n – 1)tp.

– Thus, to complete n tasks using a k-stage pipeline 
requires:

(k  tp) + (n – 1)tp = (k + n – 1)tp.

5.5 Instruction Pipelining (4 of 7)



5.5 Instruction Pipelining (5 of 7)

• If we take the time required to complete n tasks 
without a pipeline and divide it by the time it takes to 
complete n tasks using a pipeline, we find:

• If we take the limit as n approaches infinity, 
(k + n – 1) approaches n, which results in a theoretical 
speedup of:



5.5 Instruction Pipelining (6 of 7)

• Our neat equations take a number of things for 
granted.

• First, we have to assume that the architecture 
supports fetching instructions and data in 
parallel.

• Second, we assume that the pipeline can be kept 
filled at all times. This is not always the case. 
Pipeline hazards arise that cause pipeline conflicts 
and stalls.



5.5 Instruction Pipelining (7 of 7)

• An instruction pipeline may stall, or be flushed for 
any of the following reasons:
– Resource conflicts.

– Data dependencies.

– Conditional branching.

• Measures can be taken at the software level as 
well as at the hardware level to reduce the effects 
of these hazards, but they cannot be totally 
eliminated.



5.6 Real-World Examples of ISAs 
(1 of 10)

• We return briefly to the Intel and MIPS 
architectures from the last chapter, using some of 
the ideas introduced in this chapter.

• Intel introduced pipelining to their processor line 
with its Pentium chip.

• The first Pentium had two 5-stage pipelines. Each 
subsequent Pentium processor had a longer 
pipeline than its predecessor with the Pentium IV 
having a 24-stage pipeline.

• The Itanium (IA-64) has only a 10-stage pipeline.


