
Chapter 5

A Closer Look at

Instruction Set

Architectures

This is the

second lecture

of Chapter 5

Quick review of last lecture

• Talk very briefly on chapter 4 topics
• Instruction formats

– Instruction length (size)
– Number of operands per instruction
– Operand location

• Memory organizations
– Byte or word addressable
– Bib endian or little endian

• How the CPU will store data
– A stack architecture
– An accumulator architecture
– A general purpose register architecture

• Stack machine and postfix notation

5.2 Instruction Formats (22 of 31)

• Let's see how to evaluate an infix expression
using different instruction formats.

• With a three-address ISA, (e.g., mainframes),
the infix expression,

Z = X Y + W U

• Might look like this:
MULT R1,X,Y

MULT R2,W,U

ADD Z,R1,R2

Redo it using load-store architecture

• With a three-address and load-store ISA (e.g., MIPS), the
infix expression,

Z = X Y + W U

• Might look like this:
LOAD R1, X

LOAD R2, Y

MULT R3, R1, R2

LOAD R1, W

LOAD R2, U

MULT R4, R1, R2

ADD R5, R3, R4

STORE Z, R5

5.2 Instruction Formats (23 of 31)

• In a two-address ISA, (e.g., Intel, Motorola), the
infix expression,

Z = X Y + W U

• Might look like this:
LOAD R1,X

MULT R1,Y

LOAD R2,W

MULT R2,U

ADD R1,R2

STORE Z,R1

Note: Two-address

ISAs usually require

one operand to be a

register.

5.2 Instruction Formats (24 of 31)

• In a one-address ISA, like MARIE, the infix expression,
Z = X Y + W U

• Might looks like this:
LOAD X

MULT Y

STORE TEMP

LOAD W

MULT U

ADD TEMP

STORE Z

5.2 Instruction Formats (25 of 31)

• In a stack ISA, the postfix expression,
Z = X Y W U +

• might look like this:
PUSH X

PUSH Y

MULT

PUSH W

PUSH U

MULT

ADD

POP Z

5.2 Instruction Formats (26 of 31)

• We have seen how instruction length is
affected by the number of operands
supported by the ISA.

• In any instruction set, not all instructions
require the same number of operands.

• Operations that require no operands, such as
HALT, necessarily waste some space when
fixed-length instructions are used.

• One way to recover some of this space is to
use expanding opcodes.

5.2 Instruction Formats (27 of 31)

• A system has 16 registers
and 4K of memory.

• We need 4 bits to access
one of the registers. We
also need 12 bits for a
memory address.

• If the system is to have 16-
bit instructions, we have
two choices for our
instructions:

5.2 Instruction Formats (28 of 31)

• If we allow the
length of the
opcode to vary,
we could create
a very rich
instruction set:

5.2 Instruction Formats (29 of 31)

• Example: Given 8-bit instructions, is it possible to
allow the following to be encoded?
– 3 instructions with two 3-bit operands

– 2 instructions with one 4-bit operand

– 4 instructions with one 3-bit operand

• We need:
– 3 23 23 = 192 bits for the 3-bit operands

– 2 24 = 32 bits for the 4-bit operands

– 4 23 = 32 bits for the 3-bit operands

• Total: 256 bits.

5.2 Instruction Formats (30 of 31)

• With a total of 256 bits required, we can exactly
encode our instruction set in 8 bits!

• We need:

– 3 23 23 = 192 bits for the 3-bit operands

– 2 24 = 32 bits for the 4-bit operands

– 4 23 = 32 bits for the 3-bit operands

• Total: 256 bits.

One such encoding is shown on the next slide.

5.2 Instruction Formats (31 of 31)

5.3 Instruction Types

• Instructions fall into several broad categories
that you should be familiar with:
– Data movement.

– Arithmetic.

– Boolean.

– Bit manipulation.

– I/O.

– Control transfer.

– Special purpose.

Can you think of

some examples

of each of these?

