
Chapter 5

A Closer Look at 

Instruction Set 

Architectures

This is the first 

lecture of 

Chapter 5



Objectives

• Understand the factors involved in 
instruction set architecture design.

• Gain familiarity with memory addressing 
modes.

• Understand the concepts of instruction-
level pipelining and its affect upon 
execution performance.



5.1 Introduction

• This chapter builds upon the ideas in Chapter 
4.

• We present a detailed look at different 
instruction formats, operand types, and 
memory access methods.

• We will see the interrelation between 
machine organization and instruction formats.

• This leads to a deeper understanding of 
computer architecture in general.



5.2 Instruction Formats (1 of 31)

• Instruction sets are differentiated by the 
following:
– Number of bits per instruction.

– Stack-based or register-based.

– Number of explicit operands per instruction.

– Operand location.

– Types of operations.

– Type and size of operands.



5.2 Instruction Formats (2 of 31)

• Instruction set architectures are measured 
according to:

– Main memory space occupied by a program.

– Instruction complexity.

– Instruction length (in bits).

– Total number of instructions in the instruction 
set.



5.2 Instruction Formats (3 of 31)

• In designing an instruction set, consideration 
is given to:
– Instruction length.

• Whether short, long, or variable.

– Number of operands.
– Number of addressable registers.
– Memory organization.

• Whether byte- or word addressable.

– Addressing modes.
• Choose any or all: direct, indirect or indexed.



5.2 Instruction Formats (4 of 31)

• Byte ordering, or endianness, is another major 
architectural consideration.

• If we have a two-byte integer, the integer may 
be stored so that the least significant byte is 
followed by the most significant byte or vice 
versa.
– In little endian machines, the least significant byte 

is followed by the most significant byte.
– Big endian machines store the most significant 

byte first (at the lower address). 



5.2 Instruction Formats (5 of 31)

• As an example, suppose we have the 
hexadecimal number 0x12345678.

• The big endian and small endian 
arrangements of the bytes are shown 
below.



5.2 Instruction Formats (6 of 31)

• A larger example: A 
computer uses 32-
bit integers. The 
values 0xABCD1234, 
0x00FE4321, and 
0x10 would be 
stored sequentially 
in memory, starting 
at address 0x200 as 
here.



Examples of Sign Extension 

• Given the following two 
16-bit integers in 2’s 
complement
– 0x2345

– 0xA345 

• Extend them to 32-bit 
integers in 2’s 
complement
– 0x00002345

– 0xFFFFA345 



5.2 Instruction Formats (7 of 31)

• Big endian:
– Is more natural.
– The sign of the number can be determined by 

looking at the byte at address offset 0.
– Strings and integers are stored in the same order.

• Little endian:
– Makes it easier to place values on non-word 

boundaries.
– Conversion from a 16-bit integer to a 32-bit 

integer does not require any arithmetic.



5.2 Instruction Formats (8 of 31)

• The next consideration for architecture design 
concerns how the CPU will store data.

• We have three choices:
– 1. A stack architecture

– 2. An accumulator architecture

– 3. A general purpose register architecture

• In choosing one over the other, the tradeoffs 
are simplicity (and cost) of hardware design 
with execution speed and ease of use.



5.2 Instruction Formats (9 of 31)

• In a stack architecture, instructions and operands 
are implicitly taken from the stack.
– A stack cannot be accessed randomly.

• In an accumulator architecture, one operand of a 
binary operation is implicitly in the accumulator.
– One operand is in memory, creating lots of bus traffic.

• In a general purpose register (GPR) architecture, 
registers can be used instead of memory.
– Faster than accumulator architecture.
– Efficient implementation for compilers.
– Results in longer instructions.



5.2 Instruction Formats (10 of 31)

• Most systems today are GPR systems.
• There are three types:

– Memory-memory where two or three operands 
may be in memory.

– Register-memory where at least one operand 
must be in a register.

– Load-store where no operands may be in memory.

• The number of operands and the number of 
available registers has a direct affect on 
instruction length.



5.2 Instruction Formats (11 of 31)

• Stack machines use one - and zero-operand 
instructions.

• LOAD and STORE instructions require a single 
memory address operand.

• Other instructions use operands from the stack 
implicitly.

• PUSH and POP operations involve only the stack’s 
top element.

• Binary instructions (e.g., ADD, MULT) use the top 
two items on the stack.



5.2 Instruction Formats (12 of 31)

• Stack architectures require us to think about 
arithmetic expressions a little differently.

• We are accustomed to writing expressions 
using infix notation, such as: Z = X + Y.

• Stack arithmetic requires that we use postfix
notation: Z = XY+.
– This is also called reverse Polish notation, 

(somewhat) in honor of its Polish inventor, Jan 
Lukasiewicz (1878–1956).



5.2 Instruction Formats (13 of 31)

• The principal advantage of postfix notation 
is that parentheses are not used.

• For example, the infix expression, 

Z = (X + Y)  (W + U)

• becomes: 

Z = X Y + W U + 

• in postfix notation.



5.2 Instruction Formats (14 of 31)

• Example: Convert the infix expression (2+3) 
– 6/3 to postfix:



5.2 Instruction Formats (15 of 31)

• Example: Convert the infix expression (2+3) 
– 6/3 to postfix:



5.2 Instruction Formats (16 of 31)

• Example: Convert the infix expression (2+3) 
– 6/3 to postfix:



5.2 Instruction Formats (17 of 31)

• Example: Use a stack to evaluate the 
postfix expression 2 3 + 6 3 / - :



5.2 Instruction Formats (18 of 31)

• Example: Use a stack to evaluate the 
postfix expression 2 3 + 6 3 / - :



5.2 Instruction Formats (19 of 31)

• Example: Use a stack to evaluate the 
postfix expression 2 3 + 6 3 / - :



5.2 Instruction Formats (20 of 31)

• Example: Use a stack to evaluate the 
postfix expression 2 3 + 6 3 / - :



5.2 Instruction Formats (21 of 31)

• Example: Use a stack to evaluate the 
postfix expression 2 3 + 6 3 / - :


