This Is the first
lecture of
Chapter 5

THE ESSENTIALS gf
Computer

£

Orgamzatlon and

Linda Null
Julia Lobur

e 2o 7T)~ 3
YWl P o/

Ascend .Learr;ing Company
-~ www.blearning.com
‘ R

Objectives

e Understand the factors involved in
instruction set architecture design.

e Gain familiarity with memory addressing
modes.

e Understand the concepts of instruction-
level pipelining and its affect upon
execution performance.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.1 Introduction

This chapter builds upon the ideas in Chapter
4.

We present a detailed look at different
instruction formats, operand types, and
memory access methods.

We will see the interrelation between
machine organization and instruction formats.

This leads to a deeper understanding of
computer architecture in general.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (1 of 31)

e Instruction sets are differentiated by the
following:

— Number of bits per instruction.

— Stack-based or register-based.

— Number of explicit operands per instruction.
— Operand location.

— Types of operations.

— Type and size of operands.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (2 of 31)

e |nstruction set architectures are measured
according to:
— Main memory space occupied by a program.
— Instruction complexity.
— Instruction length (in bits).

— Total number of instructions in the instruction
set.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (3 of 31)

e |[n designhing an instruction set, consideration
IS given to:
— Instruction length.
e Whether short, long, or variable.
— Number of operands.
— Number of addressable registers.
— Memory organization.
e \Whether byte- or word addressable.

— Addressing modes.
e Choose any or all: direct, indirect or indexed.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (4 of 31)

e Byte ordering, or endianness, is another major
architectural consideration.

e |f we have a two-byte integer, the integer may
be stored so that the least significant byte is
followed by the most significant byte or vice
versa.

— In little endian machines, the least significant byte
is followed by the most significant byte.

— Big endian machines store the most significant
byte first (at the lower address).

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (5 of 31)

e As an example, suppose we have the
hexadecimal number 0x12345678.

e The big endian and small endian
arrangements of the bytes are shown
below.

Address 00 01 10 11
Big Endian 12 34 56 78
Little Endian 78 56 34 12

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company

www.jblearning.com

5.2 Instruction Formats (6 of 31)

e Alarger example: A
computer uses 32-
bit integers. The
values OxABCD1234,
Ox00FE4321, and
0x10 would be
stored sequentially
In memory, starting
at address 0x200 as
here.

Big Little
Address Endian Endian

0x200 AB 34
0x201 CD 12
0x202 12 CD
0x203 34 AB
0x204 00 21

0x205 FE 43
0x206 43 FE
0x207 21 00
0x208 00 10
0x209 00 00
0x20A 00 00

0x20B 10 00

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company

www.jblearning.com

Examples of Sign Extension

e Given the following two e Extend them to 32-bit
16-bit integersin 2’s integersin 2’s
complement —| complement

— 0x2345 — 0x00002345
— OxA345 — OxFFFFA345
Little endian Big endian
Base+0 | 45 Base+0 | 45 Base+0 | 23 | ——p Base+0 | 00
Base+1 | 23 | Base+l | 23 Base+1 | 45 Base+1 | 00
Base+2 | 00 Base+2 | 23
Base+3 | 00 Base+3 | 45

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (7 of 31)

e Big endian:
— |s more natural.

— The sign of the number can be determined by
looking at the byte at address offset 0.

— Strings and integers are stored in the same order.

o Little endian:

— Makes it easier to place values on non-word
boundaries.

— Conversion from a 16-bit integer to a 32-bit
integer does not require any arithmetic.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (8 of 31)

e The next consideration for architecture design
concerns how the CPU will store data.
e We have three choices:
— 1. A stack architecture
— 2. An accumulator architecture
— 3. A general purpose register architecture
e |[n choosing one over the other, the tradeoffs

are simplicity (and cost) of hardware design
with execution speed and ease of use.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (9 of 31)

e |n a stack architecture, instructions and operands
are implicitly taken from the stack.

— A stack cannot be accessed randomly.

e |n an accumulator architecture, one operand of a
binary operation is implicitly in the accumulator.
— One operand is in memory, creating lots of bus traffic.
e In a general purpose register (GPR) architecture,
registers can be used instead of memory.
— Faster than accumulator architecture.
— Efficient implementation for compilers.
— Results in longer instructions.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (10 of 31)

e Most systems today are GPR systems.

e There are three types:

— Memory-memory where two or three operands
may be in memory.

— Register-memory where at least one operand
must be in a register.

— Load-store where no operands may be in memory.
e The number of operands and the number of

available registers has a direct affect on
instruction length.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (11 of 31)

Stack machines use one - and zero-operand
instructions.

LOAD and STORE instructions require a single
memory address operand.

Other instructions use operands from the stack
implicitly.

PUSH and POP operations involve only the stack’s
top element.

Binary instructions (e.g., ADD, MULT) use the top
two items on the stack.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (12 of 31)

e Stack architectures require us to think about
arithmetic expressions a little differently.

e \We are accustomed to writing expressions
using infix notation, such as: Z=X+Y.

e Stack arithmetic requires that we use postfix
notation: Z = XY+.

— This is also called reverse Polish notation,
(somewhat) in honor of its Polish inventor, Jan
Lukasiewicz (1878—-1956).

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (13 of 31)

The principal advantage of postfix notation
is that parentheses are not used.

For example, the infix expression,
Z = (X + YY) x (W + U)
becomes:
Z XY+ WU 4+ X

in postfix notation.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (14 of 31)

e Example: Convert the infix expression (2+3)
— 6/3 to postfix:

The sum 2 + 3 in parentheses takes
23+-6/3 precedence; we replace the term with

23+,

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (15 of 31)

e Example: Convert the infix expression (2+3)
— 6/3 to postfix:

The division operator takes next
23+-63/ precedence; we replace 6/3 with

63/

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (16 of 31)

e Example: Convert the infix expression (2+3)
— 6/3 to postfix:

The quotient 6/3 1s subtracted from the
sum of 2 + 3, so we move the - operator
to the end.

23+6 3/-

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (17 of 31)

e Example: Use a stack to evaluate the
postfix expression23+63/-:

Scanning the expression | T
from left to right, push

operands onto the stack,
until an operator 1s found 3

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (18 of 31)

e Example: Use a stack to evaluate the
postfix expression23+63/-:

Pop the two operands and
carry out the operation 1
indicated by the operator.

Push the result back on the

stack.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (19 of 31)

e Example: Use a stack to evaluate the
postfix expression23+63/-:

Push operands until another
operator 1s found. 3

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (20 of 31)

e Example: Use a stack to evaluate the
postfix expression23+63/-:

Carry out the operation and
push the result.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

5.2 Instruction Formats (21 of 31)

e Example: Use a stack to evaluate the
postfix expression23+63/-:

Finding another operator, 2 3|+6]3 /-
carry out the operation and 1
push the result.
The answer 1s at the top of
the stack.

3

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

