
Chapter 4
MARIE: An
Introduction

to a Simple Computer

This is the

second lecture

of Chapter 4

4.8 MARIE (1 of 12)

• We can now bring together many of the ideas that
we have discussed to this point using a very simple
model computer.

• Our model computer, the Machine Architecture that is
Really Intuitive and Easy (MARIE) was designed for the
singular purpose of illustrating basic computer system
concepts.

• While this system is too simple to do anything useful in
the real world, a deep understanding of its functions
will enable you to comprehend system architectures
that are much more complex.

4.8 MARIE (2 of 12)

• The MARIE architecture has the following
characteristics:
• Binary, two's complement data representation.

• Stored program, fixed word length data and instructions.

• 4K words of word-addressable main memory.

• 16-bit data words.

• 16-bit instructions, 4 for the opcode and 12 for the
address.

• A 16-bit arithmetic logic unit (ALU).

• Seven registers for control and data movement.

4.8 MARIE (3 of 12)

• MARIE’s seven registers are:
1. Accumulator, AC, a 16-bit register that holds a

conditional operator (e.g., "less than") or one operand
of a two-operand instruction.

2. Memory address register, MAR, a 12-bit register that
holds the memory address of an instruction or the
operand of an instruction.

3. Memory buffer register, MBR, a 16-bit register that
holds the data after its retrieval from, or before its
placement in memory.

4.8 MARIE (4 of 12)

4. Program counter, PC, a 12-bit register that holds the
address of the next program instruction to be
executed.

5. Instruction register, IR, which holds an instruction
immediately preceding its execution.

6. Input register, InREG, an 8-bit register that holds data
read from an input device.

7. Output register, OutREG, an 8-bit register, that holds
data that is ready for the output device.

4.8 MARIE (5 of 12)

• This is the MARIE architecture shown graphically.

4.8 MARIE (6 of 12)

• The registers are interconnected, and connected with
main memory through a common data bus.

• Each device on the bus is identified by a unique number
that is set on the control lines whenever that device is
required to carry out an operation.

• Separate connections are also provided between the
accumulator and the memory buffer register, and the
ALU and the accumulator and memory buffer register.

• This permits data transfer between these devices
without use of the main data bus.

4.8 MARIE (7 of 12)

• This is the MARIE
data path shown
graphically.

4.8 MARIE (8 of 12)

• A computer’s instruction set architecture (ISA)
specifies the format of its instructions and the
primitive operations that the machine can perform.

• The ISA is an interface between a computer’s
hardware and its software.

• Some ISAs include hundreds of different
instructions for processing data and controlling
program execution.

• The MARIE ISA consists of only 13 instructions.

4.8 MARIE (9 of 12)

• This is the format of a MARIE instruction:

• The fundamental MARIE instructions are:

4.8 MARIE (10 of 12)

• This is a bit pattern for a LOAD instruction as it
would appear in the IR:

• We see that the opcode is 1 and the address from
which to load the data is 3.

• This is a bit pattern for a SKIPCOND instruction as it
would appear in the IR:

• We see that the opcode is 8 and bits 11 and 10 are
10, meaning that the next instruction will be skipped
if the value in the AC is greater than zero.

4.8 MARIE (11 of 12)

What is the hexadecimal representation of this instruction?

4.8 MARIE (12 of 12)

1. SKIPCOND 000
If AC < 0 then PC  PC + 1

2. SKIPCOND 400
If AC = 0 then PC  PC + 1

3. SKIPCOND 800
If AC > 0 then PC  PC + 1

What is the hexadecimal
representation of this
instruction?

8800

8: opcode

800: address

Three SKIPCOND
Instructions and
their meanings

SKIPCOND

4.11 A Discussion on Assemblers (1 of 4)

• Mnemonic instructions, such as LOAD 104, are
easy for humans to write and understand.

• They are impossible for computers to understand.

• Assemblers translate instructions that are
comprehensible to humans into the machine
language that is comprehensible to computers
• We note the distinction between an assembler and a

compiler: In assembly language, there is a one-to-one
correspondence between a mnemonic instruction and
its machine code. With compilers, this is not usually the
case.

4.11 A Discussion on Assemblers (2 of 4)

• Assemblers create an object program file from
mnemonic source code in two passes.

• During the first pass, the assembler assembles as
much of the program as it can, while it builds a
symbol table that contains memory references for
all symbols in the program.

• During the second pass, the instructions are
completed using the values from the symbol table.

4.11 A Discussion on Assemblers (3 of 4)

• Consider our example
program at the right.
• Note that we have

included two
directives HEX and
DEC that specify the
radix of the constants.

• The first pass, creates
a symbol table and
the partially-
assembled
instructions as shown.

4.11 A Discussion on Assemblers (4 of 4)

• After the second pass, the assembly is complete.

4.12 Extending Our Instruction Set (1 of 2)

• So far, all of the MARIE instructions that we have
discussed use a direct addressing mode.

• This means that the address of the operand is
explicitly stated in the instruction.

• It is often useful to employ a indirect addressing,
where the address of the address of the operand is
given in the instruction.
• If you have ever used pointers in a program, you are

already familiar with indirect addressing.

4.12 Extending Our Instruction Set (2 of 2)

• The Four indirect memory access instructions:
• LOADI X means AC M[M[X]]
• STOREI X means M[M[X]]  AC
• ADDI X means AC  AC + M[M[X]]
• JUMPI X means PC M[X]

• The jump-and-store instruction
• JNS X

• Save return address at memory location X
and jump to subroutine starting at X+1

• M[X]  PC and PC  X+1

• The clear instruction
• CLEAR means AC  0

Does JNS permit
recursive calls?

MARIE Assembly Program: Example 4.0

ORG 100 /Example 4.0

Load Num1 /Load address of first number to be added

Add Num2 /Add the second number

Store Sum /Store sum at address Sum

Output /Display

Halt /Terminate program

Num1, Hex 0023 /The first number to add

Num2, Hex FFE9 /The second number to add

Sum, Hex 0000 /The sum

Compute Sum = Num1 + Num2 and display Sum

Note that Num1 and Num2 are 2’s complement representation.

Num1 = 35 and Num2 = -23

MARIE Assembly Program: Example 4.1

ORG 100 /Example 4.1

Input /Get the first integer from keyboard into AC

Store Num1 /Save the first integer in Num1

Input /Get the second integer from keyboard into AC

Store Num2 /Save the second integer in Num1

Add Num1 /Add the first integer with the second integer

Store Sum /Store sum at address Sum

Output /Display

Halt /Terminate program

Num1, Hex 0000 /The first integer to add

Num2, Hex 0000 /The second integer to add

Sum, Hex 0000 /The sum

Get two integers from keyboard and store them in Num1 and Num2,
respectively. Then compute Sum = Num1 + Num2 and display Sum

Addr, Hex 119 /Numbers to be summed start at location 119
Next, Hex 0 /A pointer to the next number to add
Num, Dec 5 /The number of values to add
Sum, Dec 0 /The sum
Ctr, Hex 0 /The loop control variable
One, Dec 1 /Used to increment and decrement by 1

Dec 10 /The values to be added together
Dec 15
Dec 20
Dec 25
Dec 30

Example 4.2 (Cont.)

Using loop to add five numbers in array, save result to Sum, and
display Sum

113
114
115
116
117
118
119
11A
11B
11C
11D

MARIE Assembly Program: Example 4.2

Using loop to add five numbers in array, save result to Sum, and
display Sum

ORG 100 /Example 4.2
Load Addr /Load address of first number to be added
Store Next /Store this address is our Next pointer
Load Num /Load the number of items to be added
Subt One /Decrement
Store Ctr /Store this value in Ctr to control looping

Loop, Load Sum /Load the Sum into AC
AddI Next /Add the value pointed to by location Next
Store Sum /Store this sum
Load Next /Load Next
Add One /Increment by one to point to next address
Store Next /Store in our pointer Next
Load Ctr /Load the loop control variable
Subt One /Subtract one from the loop control variable
Store Ctr /Store this new value in loop control variable
Skipcond 000 /If control variable < 0, skip next instruction
Jump Loop /Otherwise, go to Loop
Load Sum
Output /Display Sum
Halt /Terminate program

100
101
102
103
104
105
106
107
108
109
10A
10B
10C
10D
10E
10F
110
111
112

Addr, Hex 119 /Numbers to be summed start at location 119
Next, Hex 0 /A pointer to the next number to add
Num, Dec 5 /The number of values to add
Sum, Dec 0 /The sum
Ctr, Hex 0 /The loop control variable
One, Dec 1 /Used to increment and decrement by 1

Dec 10 /The values to be added together
Dec 15
Dec 20
Dec 25
Dec 30

Example 4.2 (Cont.)

Using loop to add five numbers in array, save result to Sum, and
display Sum

113
114
115
116
117
118
119
11A
11B
11C
11D

MARIE Assembly Program: Example 4.3

/ This program traverses a string and outputs each character. The string is terminated with
/ a null character.

ORG 100
Getch, LoadI Chptr / Load the character found at address chptr.

Skipcond 400 / If the character is a null, we are done.
Jump Outp / Otherwise, proceed with operation.
Halt

Outp, Output / Output the character.
Load Chptr / Move pointer to
Add One / next character.
Store Chptr
Jump Getch

One, Hex 0001
Chptr, Hex 10B

String, Dec 072 / H
Dec 101 / e
Dec 108 / l
Dec 108 / l
Dec 111 / o
Dec 032 / [space]
Dec 119 / w
Dec 111 / o
Dec 114 / r
Dec 108 / l
Dec 100 / d
Dec 033 / !
Dec 000 / [null]

100
101
102
103
104
105
106
107
108
109
10A

10B

MARIE Assembly Program: Example 4.4

/This example illustrates the use of a simple subroutine to double the value stored at Temp

ORG 100
Load X / Load the first number to be doubled.
Store Temp / Use Temp as a parameter to pass value to Subr.

JnS Subr / Store the return address, and jump to the procedure.
Store X / Store the first number, doubled
Load Y / Load the second number to be doubled.
Store Temp
JnS Subr / Store the return address and jump to the procedure.

Store Y / Store the second number doubled.
Halt / End program.

X, DEC 20
Y, DEC 48

Temp, DEC 0
Subr, HEX 0 / Store return address here.

Load Temp / Actual subroutine to double numbers.
Add Temp / AC now holds double the value of Temp.
JumpI Subr / Return to calling code.

END

