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Abstract—Several simple computer architecture simulators are 
developed and implemented for four different instruction formats, 
including stack-based, accumulator-based, two-address, and three-
address machines. The simulators for the first two machines have 
been reported in [1]. This paper will present details for the remaining 
two instruction formats. These simulators can be used to assemble 
and run assembly language programs on these architectures. Several 
examples are given to illustrate how to develop assembly language 
programs to deal with arrays, loops, subroutines, and recursions on 
these different computer architectures. Students will have a better 
understanding of computer architectures by using these simulators 
on their assembly language programming assignments. In addition, 
students can also modify these simulators to add more instructions, 
debugging functions, and etc. 

Keywords—Computer Architecture, Simulator, Instruction 
Format, Assembly Language Programming 

I. INTRODUCTION 

Assembly language programming and writing, using and 
modifying processor simulators are major hands-on assignment 
categories in an undergraduate computer architecture course [2]. 
There are many computer architectures with different instruction 
formats such as stack-based, accumulator-based, two-address, 
or three-address machine. But, in general, only one architecture 
will be chosen for teaching assembly language programming in 
a computer architecture class or textbook. David A. Patterson 
and John L. Hennessy uses MIPS in their textbook [3]. Kip 
Irvine teaches x86 in his textbook [4]. Linda Null and Julia 
Lobur uses the accumulator-based architecture and the MARIE 
simulator [5]. On the other hand, although there are numerous 
processor simulators available [6], most simulators are for the 
research purpose and using them needs a big learning curve. It 
is certainly desirable to have various simple simulators, each for 
one major computer processor architecture, so that students can 
program and compare these processors. 

To this end, six simple computer architecture simulators are 
designed and implemented for four different instruction formats, 
including stack-based, accumulator-based, two-address (2A), 
and three-address (3A) machines. The simulators for the first 
two instruction formats have been reported in [1]. This paper 
will present details for the remaining two instruction formats. 
Both memory-to-memory (M2M) and register-to-register (R2R) 

architectures are implemented for both 2A and 3A machines. 
These simulators can be used to assemble and run assembly 
language programs on these simulated computer architectures. 
Several simple applications are used to illustrate how to develop 
assembly language programs to deal with arrays, loops, stacks, 
subroutines, and recursions on these computer architectures. 

Students will have a better understanding of computer 
architectures by using these simulators on their assembly 
language programming exercises. Students can also modify 
these simulators to add more instructions, debugging functions, 
and etc. In addition, these simulated machines can serve as the 
compiler’s target machines for the code generation practice. 

This paper will present details for the 2A and 3A machines. 
Please refer [1] for details on stack-based and accumulator-
based machines. In the rest of this paper, the simulated 
instruction sets are presented in Second II. Assembly language 
programming examples using these simulators are described in 
Second III. Finally, Second IV concludes the paper.  

II. INSTRUCTION SETS OF SIMULATED MACHINES 

In simulated machines, all data are 32 bits and all addresses 
and immediate data are 16 bits. All instructions in one simulated 
machine are of the fixed word length which may be different for 
different machines. Two separate memories are used for data 
and instructions. Data are word addressable and a datum word is 
32 bits. Instruction is also word addressable, but an instruction 
word may not be 32 bits and it will depend on its particular 
instruction format of simulated machine. So, each simulated 
machine has 64K 32-bit words of data memory and 64K 
instruction words of instruction memory.  

In this paper, the notation M[A] represents the memory 
content at memory address A. The acronym Imm stands for 16-
bit immediate number, PC for program counter, and SP for stack 
pointer.  

In all simulated machines, stack will grow toward higher 
memory address. The stack pointer SP is a register in R2R 
architectures, while it is a reserved memory location in M2M 
architectures. Meanwhile, there are three additional reserved 
memory locations in M2M architectures. They are ZERO for 
constant 0, INPUT for input data, and OUTOUT for output data.   



A. Two-Address Memory-to-Memory Instruction Set 

The instruction set of the simulated 2A M2M machine 
contains 19 instructions as shown in Table 1. It includes 1 load 
immediate (LI) instruction, 6 integer arithmetic instructions, 1 
load and 1 store (GET and PUT) instructions, 5 branch 
instructions, 1 subroutine call and 1 subroutine return (JNS and 
JR) instructions, 1 input and 1 output (READ and PRNT) 
instructions, and finally, 1 stop instruction to terminate the 
program. 

In Table 1: 2A M2M Instruction Set, the symbol  means 
assignment. The letters A and B indicate memory locations. 
They can be a global variable name or a local variable in the 
form of $+Imm whose memory address is M[SP]+Imm. So, the 
instruction ADD A $+4 means M[A]  M[A] + M[M[SP]+4]. 
Note that M[SP] is the content of SP and is usually pointing to 
the top of stack. JNS Label will  save PC on stack and assign 
Label to PC. JR will assign the top content on stack to PC and 
remove it from stack. 

Table 1: 2A M2M Instruction Set 

 Instruction Meaning 

0 LI         A  Imm  M[A]  Imm          

1 ADDI   A  Imm  M[A]  M[A]+Imm 

2 ADD    A  B  M[A]  M[A]+M[B] 

3 SUB     A  B M[A]  M[A]-M[B] 

4 MUL    A  B M[A]  M[A]*M[B] 

5 DIV      A  B M[A]  M[A]/M[B] 

6 REM    A  B M[A]  M[A]%M[B] 

7 GET     A  B M[A]  M[M[B]] 

8 PUT     A  B M[M[B]]  M[A] 

9 GOTO  Label PC  Label 

10 BEQZ  A  Label If M[A] = 0 GOTO Label 

11 BNEZ  A  Label If M[A] ≠ 0 GOTO Label 

12 BGEZ  A  Label If M[A] ≥ 0 GOTO Label 

13 BLTZ  A  Label If M[A] < 0 GOTO Label 

14 JNS     Label M[SP] = M[SP]+1, M[M[SP]] = PC, & 
PC  Label 

15 JR PC  M[M[SP]] & M[SP] = M[SP]-1 

16 READ  M[INPUT]  Input 

17 PRNT Display M[OUTPUT] on screen 

18 STOP Terminate program 

 

Table 2 shows four pseudo-instructions in which MOVE and 
NEG are implemented by using four instructions each, while 
PUSH and POP using 2 instructions each. 

Table 2: Pseudo-Instructions of 2A M2M Machine 

 Pseudo-Instruction Meaning 

1 MOVE C A M[C]  M[A] 

2 NEG    A M[A]  -M[A] 

3 POP     A 

 

M[A]  M[M[SP]] 
M[SP]  M[SP] - 1 

4 PUSH  A M[SP]  M[SP] + 1 

M[M[SP]]  M[A] 

B. Three-Address Memory-to-Memory Instruction Set 

The instruction set of the simulated 3A M2M machine has 
19 instructions in which instructions 0, 9, 14-18 are the exactly 
same with those of the simulated 2A M2M machine and the 
remaining instructions are listed in Table 3. Note that if the 
memory location C in instructions 1-6 in Table 3 is all replaced 
by A and the C in instructions 7, 8, 10-13 in Table 3 is all 
replaced by the reserved memory location ZERO, these 
instructions are the same with those of the 2A M2M machine. 
Therefore, the 2A M2M instruction set is a subset of the 3A 
M2M instruction set.  

Please note that pseudo-instructions in Table 2 are also 
implemented in the 3A M2M machine, but MOVE and NEG are 
implemented by using only one instruction each. In addition, 
four more pseudo-instructions BEQZ, BNEZ, BGEZ, and BLTZ 
are introduced as a short version of responding instructions. For 
example, BEQZ A Label is really BEQ A ZERO Label. 

Table 3: Remaining Instructions of 3A M2M Instruction Set 

 Instruction Meaning 

1 ADDI  A  C  Imm  M[A]  M[C]+Imm 

2 ADD    A  C  B  M[A]  M[C]+M[B] 

3 SUB     A  C  B  M[A]  M[C]-M[B] 

4 MUL    A  C  B M[A]  M[C]*M[B] 

5 DIV      A  C  B M[A]  M[C]/M[B] 

6 REM    A  C  B  M[A]  M[C]%M[B] 

7 GET     A  C  B M[A]  M[C+M[B]] 

8 PUT     A  C  B M[C+M[B]]  M[A] 

10 BEQ     A  C  Label If M[A] = M[C] GOTO Label 

11 BNE     A  C  Label If M[A] ≠ M[C] GOTO Label 

12 BGE     A  C  Label If M[A] ≥ M[C] GOTO Label 

13 BLT      A  C  Label If M[A] < M[C] GOTO Label 

 

C. Two-Address Register-to-Register Instruction Set 

In the R2R architectures, 32 general purpose registers and 
the MIPS register convention [4] as shown in Table 4 are used. 

Table 4: MIPS Register Convention [4] 

Name Number Usage 

$zero $0 The constant value 0 

$at $1 Reserved for assembler 

$v0-$v1 $2-$3 Expression evaluation and results of a function 

$a0-$a3 $4-$7 Argument 1-4 

$t0-$t7 $8-$15 Temporary (not preserved across call) 

$s0-$s7 $16-$23 Saved temporary (preserved across call) 

$t8-$t9 $24-$25 Temporary (not preserved across call) 

$k0-$k1 $26-$27 Reserved for OS kernel 

$gp $28 Pointer to global area 

$sp $29 Stack pointer 

$fp $30 Frame pointer 



$ra $31 Return address (used by function call) 

 
The instruction set of the simulated 2A R2R machine has 19 

instructions which can be simply obtained by replacing memory 
locations A and B in the Instruction column of Table 1 with 
registers R and R1 respectively, and replacing M[A] and M[B] 
in the Meaning column of Table 1 with R and R1 respectively 
as well. For examples, ADD R R1 means R  R+R1 and GET 
R R1 means R  M[R1]. But, the instructions 14-17 in 2A R2R 
have different meaning with their counterparts in Table 1 and 
are listed in Table 5. The major differences between R2R and 
M2M architectures are (1) the subroutine call instruction JNS 
saves the return address in the register $ra in R2R, while it saves 
the return address on stack in M2M, (2) the subroutine return 
instruction JR gets the return address from $ra in R2R, while it 
gets the return address from stack in M2M, (3) the input goes to 
the register $v0 in R2R, while it goes to the reserved memory 
location INPUT in M2M, and (4) the content for display is in the 
register $a0 in R2R, while it is in the reserved memory location 
OUTPUT. Note that this architecture is called R2R because all 
arithmetic instructions are not allowed to access memory. 

 
Table 5: Four Instructions 14-17 in 2A R2R Instruction Set 

 Instruction Meaning 

14 JNS      Label $ra  PC & PC  Label  

15 JR         PC  $ra 

16 READ  $v0  Input 

17 PRNT Print $a0 

 
The four pseudo-instructions in Table 2 are implemented in 

their register version in 2A R2R machine. MOVE and NEG use 
four instructions each and PUSH and POP use two instructions 
each. One additional pseudo-instruction LA R Var which loads 
the address of the variable Var into the register R is implemented 
by using one instruction only. 

D. Three-Address Register-to-Register Instruction Set 

The instruction set of the simulated 3A R2R machine has 19 
instructions in which instructions 14-17 are the same with those 
in Table 5 and other instructions except instructions 7-8 can be 
simply obtained by replacing memory locations in Instruction 
column and memory contents at memory locations in Meaning 
column of Table 3 (Table 1) with registers. The two exceptional 
instructions GET and PUT are listed in Table 6. The offset in 
these two instructions is a 16-bit integer which can be a constant 
or a variable name. It is easy to see that the instruction set of 3A 
R2R is a superset of that of 2A R2R. 3A R2R also implements 
all pseudo-instructions of 2A R2R. 

Table 6: Two Instructions 7-8 in 3A R2R Instruction Set 

 Instruction Meaning 

7 GET     R  R1  Offset R  M[R1+Offset] 

8 PUT     R  R1  Offset M[R1+Offset]  R 

 

III. ASSEMLY LANGUAGE PROGRAM EXAMPLES 

Any assembly language program of all simulated machines 
consists of three parts: data section (optional), code section, and 
input section (optional) separated by a key word END.  

The data section is used for declaring variables in memory. 
Each declaration takes one line and consists of ID, Type, and 
Value. ID is a variable name, Type indicates number of words 
the variable value has, and Value is optional initial value(s) of 
the variable. The code section consists of assembly language 
instructions. Each instruction takes one line and precedes an 
optional label immediately followed by ‘:’ symbol. The input 
section is used for providing user input data. One line contains 
only one word (integer). In addition, users can add comments 
starting from // symbol and until to the end of line. A comment 
cannot cross multiple lines. 

In the following subsections, two simple examples are used 
to illustrate how to write assembly language programs to deal 
with array, loop, function, and recursion for the simulated 
machines. The first example is to compute sum of absolute 
values of all elements in an array. The second example is to 
compute Fibonacci number. 

A. Sum of Absolute Values of Elements in Array 

In this subsection, an array of integers and the length of the 
array are given in the data section, the sum of absolute values of 
elements in the array is computed, saved in the data section, and 
displayed on screen. Figures 1-4 show the assembly language 
programs for the four different computer architectures 2A M2M, 
2A R2R, 3A M2M, and 3A R2R, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 2A M2M Code Using Array 

These programs demonstrate how to declare variables in the 
data section and how to write assembly instructions to access 
array elements one by one and to control the loop iterations in 
the code section.  

For the array access, a pointer to the array is used for 2A 
machines, while an array index and the array base address are 
used for 3A machines. In each loop iteration, the point will be 
increased to point to the next array element in 2A machine, while 
the array index will be increased for the next array element in 

//Decorations  
PDAT  1  DAT //Pointer to the array DAT 
SUM  1 0 //Sum 
NUM 1 9 //Number of elements in the array 
TMP  1  0 //Temporary location  
DAT  9  10 20 30 -40 50 60 70 80 -90  //Array data 
END 
//Instructions 
L1: BEQZ  NUM  L3  //If NUM=0, done  
 GET TMP  PDAT //Get an element from array 
 BGEZ  TMP  L2   //If positive, skip 
 NEG TMP  //TMP = -TMP 
L2: ADD  SUM  TMP //Add to sum 
 ADDI  NUM  -1  //Decrease NUM by one 
 ADDI  PDAT  1  //Point to next array element 
 GOTO  L1  //Next iteration 
L3: MOVE  OUTPUT  SUM //Print sum on screen 
 PRNT 
 STOP   //Terminate program 
END 



3A machines. The variable PDAT in Figure 1 and the register 
$s0 in Figure 2 are such pointers. The variable IND in Figure 3 
and the register $t0 in Figure 4 are the array index. Note that the 
array variable DAT reparents the base address of this array.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: 2A R2R Code Using Array 

 

 

 

 

 

 

 

 

 

 

Figure 3: 3A M2M Code Using Array 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: 3A R2R Code Using Array 

For the loop control, the length of the array is used for 2A 
machines. In each iteration, the length is deceased by one. When 
the length becomes 0, the loop ends. The variable NUM in 
Figure 1 and the register $t0 Figure 2 are the array length. On 
the other hand, the array index that is used for accessing array is 
also used for the loop control in 3A machines. In each iteration, 
the index is increased by one. When the index becomes equal to 
the array length, the loop ends.  

Please note that the array access and loop control methods 
used for 2A machines can be used for 3A machines as well, but 
not vice versa. 2A machines can neither access the memory 
using a base address plus offset nor branch based on comparing 
two non-zero quantities. Please also note that 3A machine could 
use the array length as the array index for both the loop control 
like 2A machines and the array access like 3A machines. In this 
case, the index variable can be omitted and the array element is 
processed from the end to the beginning. 

Aside from the differences between 2A and 3A machines, 
there are some differences between R2R and M2M machines. 
In general, M2M programs have less instructions than their 
counterpart R2R programs. However, M2M programs have a 
larger size and much more memory accesses than R2R. So R2R 
machines have much better performance than M2M. Table 7 
shows comparison results of the four programs using array for 
2A M2M, 2A R2R, 3A M2M, and 3A R2R respectively.  

In Table 7, the acronym NI is for number of instructions of 
programs, LI for length of instruction, PS for program size, 
NIMA for number of instructions fetched from memory during 
execution, NDMA for number of data memory accesses during 
execution, and TNMA for total number of memory accesses 
during execution. Note that one pseudo-instruction may include 
more than one instruction. Each instruction set is encoded in a 
fixed instruction length in the implementation. The column LI 
list numbers of bits required for encoding instructions for each 
machine. These number of bits are used for computing the size 
of programs. According to Table 7, 3A R2R machine is the best 
among the four architectures. That is why almost all modern 
processor architectures are 3A R2R. 

Table 7: Comparison Results of the Four Programs Using Array 

 NI LI PS NIMA NDMA TNMA 

2A M2M 17 39 bits 663 bits 106 190 296 

2A R2R 19 26 bits 494 bits 108 11 119 

3A M2M 10 56 bits 560 bits 67 141 208 

3A R2R 13 31 bits 403 bits 70 11 81 

 

B. Compute Binonacci Numbers 

Three methods will be used to compute Fibonacci numbers, 
which is defined as bellow. The first is using a loop, the second 
using a non-recursive function, and the third using a recursive 
function.    

//Declaration  
SUM  1 0 //Sum 
NUM  1  9 //Number of elements in the array 
DAT  9  10 20 30 -40 50 60 70 80 -90  //Array data 
END 
//Instructions 
 LA  $s0 NUM //$s0 = address of NUM 
 GET  $t0 $s0 //$t0 = NUM 
 LA    $s0 DAT //$s0 = address of DAT 
 LI  $a0 0 //$a0(sum) = 0 
L1: BEQZ  $t0 L3 //If no remaining element, done 
 GET   $t1 $s0 //Get an array element into $t1 
 BGEZ  $t1 L2  //If positive, skip  
 NEG   $t1 //Else, negate $t1 
L2: ADD  $a0 $t1 //Add to $a0(sum) 
 ADDI  $t0 -1 //Decrease num of remaining elements 
 ADDI  $s0 1  //Next element 
 GOTO  L1 //Next iteration 
L3: LA $s0 SUM //$s0 = address of SUM 
 PUT $a0 $s0 //Save the sum to SUM 
 PRNT  //Print sum on screen 
 STOP  //Terminate program 
END 

//Declaration  
//SUM, NUM, and DAT are the same as those in Figure 2 
END 
//Instructions 
 LI  $t0 0  //$t0(index) = 0 
 GET  $t1 $zero NUM //$t1 = NUM 
 LI    $a0 0  //$a0(sum)=0 
L1: BEQ  $t0 $t1 L3  //If index=NUM, done 
 GET  $t2 $t0 DAT //Get an array element 
 BGE  $t2 $zero L2  //If positive, skip  
 NEG  $t2  //Else, negate 
L2: ADD  $a0 $a0 $t2 //Add $t2 to $a0(sum) 
 ADDI  $t0 $t0 1  //Increase index 
 GOTO  L1  //Next iteration 
L3: PUT $a0 $zero SUM //Save the sum to SUM
 PRNT   //Print sum on screen 
 STOP   //Terminate program 
END 

//Declaration  
IND 1  0 //Array index  
//SUM, NUM, TMP, and DAT are the same as those in Figure 1  
END 
//Instructions 
L1: BEQ IND NUM L3 //If IND=NUM, done 
 GET TMP DAT IND //Get an array element 
 BGE  TMP ZERO L2  //If positive, skip 
 NEG TMP  //Else, negate 
L2: ADD  SUM SUM TMP //Add to sum 
 ADDI  IND IND 1 //Increase index IND by one 
 GOTO  L1  //Next iteration 
L3: MOVE  OUTPUT SUM //Move sum into OUTPUT 
 PRNT   //Print sum on screen 
 STOP   //Terminate program 
END  



𝐹𝑖𝑏(𝑁) = ൜
𝑁                                               𝑖𝑓 𝑁 < 2

𝐹𝑖𝑏(𝑁 − 1) + 𝐹𝑖𝑏(𝑁 − 2)  𝑖𝑓 𝑁 ≥ 2
 

. 

Figure 5 shows C++ code that computes Fibonacci number 
using a loop. The control constructs used in this C++ code will 
be used (translated) in the assembly language programs later so 
that comparisons can be made.  

 

 

 

 

 

 

 

 

 

Figure 5: C++ Code: Compute Fibonacci Number Using Loop 

In the following subsections, assembly language programs 
for 2A machines will be illustrated only because programs for 
3A machines are very similar with their 2A counterparts except 
they use less instructions. It is assumed that the number N is a 
user input in the following programs. 

1) Using a Loop  
Figure 6 shows the 2A M2M code computing the Fibonacci 

number using a loop. In the data section, the same variables as 
those in C++ code are declared. The program reads the input 
and stores it in variable N. Then, it computes N-2 and checks if 
N ≥ 2. If no, it stores the result in C, which is N itself, and goes 
to print result. Otherwise, it computes the loop body (C = B+A; 
A = B; B = C;), decreases N, and checks if N ≥ 0. If yes, it goes 
to next loop iteration. If no, it exists the loop and prints the 
result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 2A M2M Code Using Loop 

Figure 7 shows the 2A R2R code computing the Fibonacci 
number using a loop. This code utilizes registers for variables 
instead of memory locations. For examples, $v0 is N, $t1 is A, 
$t2 is B, and $a0 is C. Note that the READ instruction will save 
user input in $v0 and the PRNT instruction will display $a0.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7: 2A R2R Code Using Loop 

Table 8: Comparison Results of the Four Programs Using 
LoopTable 7 shows comparison results of the four programs 
using loop for 2A M2M, 2A R2R, 3A M2M, and 3A R2R 
machines respectively. The numbers in Table 8 Table 7are 
calculated assuming that the user input N is 10. For examples, 
NIMA for 2A M2M and 2A R2R machines is computed by 
15N+2 and 15N-4, respectively. It is clear that R2R machines 
are better than M2M’s and 3A machines are better than 2A’s.  

Table 8: Comparison Results of the Four Programs Using Loop 

 NI LI PS NIMA NDMA TNMA 

2A M2M 32 39 1,248 152 299 451 

2A R2R 26 26 676 146 0 146 

3A M2M 13 56 728 53 132 185 

3A R2R 13 31 403 53 0 53 

 

2) Using a Non-Recursive Function 

Figure 8 shows the 2A M2M code computing the Fibonacci 
number using a non-recursive function. It takes an integer N as 
input and compute Fib(N) as output. Note that the input N 
should be pushed on stack just before calling the function and 
the result Fib(N) should be stored on stack so that right after the 
function returns, only the function result remains on the stack.  

Note that the subroutine Fib shown in Figure 8 does not use 
any push or pop instructions. Therefore, the stack point SP does 
not change inside the subroutine Fib and thus there is no need 
to restore the stack inside the subroutine. 

Table 9 shows the stack frame of function Fib in Figure 8. 
Right after the function call instruction JNS and right before the 

//Declarations 
N  1  0   //N 
C  1  0   //Fib(N) 
B  1  1   //Fib(N-1) 
A 1  0   //Fib(N-2) 
END 
//Instruction 
 READ   //INPUT = Input N 
 MOVE N  INPUT  //N = Input 
 MOVE  C  N  //C = N 
 ADDI  N  -2  //N = N-2 
 BLTZ  N  L2  //If N<2, done 
L1: MOVE  C  B  //C = B 
 ADD  C  A  //C = C + A 
 MOVE  A  B  //A = B 
 MOVE  B  C  //B = C 
 ADDI  N  -1  //N-- 
 BGEZ  N  L1  //If N >=0 
L2: MOVE  OUTPUT  C //OUTPUT = C 
 PRNT   //Print C 
 STOP   //Terminate 
END 
10 

END 
//Instruction 
 READ   //$v0 = N 
 MOVE  $a0  $v0  //$a0(C) = N 
 ADDI  $v0  -2  //$v0 = $v0-2 
 BLTZ  $v0  L2  //If N<2, done 
 LI  $t1  0  //$t1(A) = 0 
 LI  $t2  1  //$t2(B) = 1 
L1: MOVE  $a0  $t2  //$a0(C) = B,  
 ADD  $a0  $t1  //C = B+A 
 MOVE  $t1  $t2   //A = B 
 MOVE  $t2  $a0  //B = C 
 ADDI  $v0  -1  //N-- 
 BGEZ  $v0  L1  //if N >= 0, continue 
L2: PRNT   //Print $a0 (C) 
 STOP   //Terminate 
END 
10 

int main() {  //compute Fib(N) 
        int I, A, B, C, N  
        std::cin >> N;  //get input N, say 10. 
        if (N < 2) 
                C = N; 
        else { 
                A = 0; B = 1; 
                for (I = 2; I <= N; I++) { 
                        C = B + A; A = B; B = C; 
                } 
        }  

    std::cout << C; 
    return 0; 

}   



function return instruction JR are executed, the stack pointer is 
(should be) pointing to the return address on stack. One slot 
below the return address on stack is used for input N and output 
Fib(N) or C. The next three slots on the stack are for local 
variables A, B, and S. Remember, the stack is growing toward 
higher memory address. Here, local variable S at $+3 is used to 
hold N-2 initially and then used for controlling the loop like 
variable N as shown Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: 2A M2M Code Using Non-Recursive Function 

Note that the subroutine Fib shown in Figure 8 does not use 
any push or pop instructions. Therefore, the stack point SP does 
not change inside the subroutine Fib and thus there is no need 
to restore the stack inside the subroutine. 

Table 9: Stack Frame of Function Fib in 2A M2M Code  

Address Content Explanation 

$-1 N/Fib(N)/C Iuput/Output 

$ RA Return Address 

$+1 A Local Variable 

$+2 B Local Variable 

$+3 S Local Variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: 2A R2R Code Using Non-Recursive Function 

Figure 9 shows the 2A R2R code computing the Fibonacci 
number using a non-recursive function. It takes an integer N 
saved in $a0 as input and compute Fib(N) and save it in $v0 as 
output. Note that there is no stack frame necessary for the 
function Fib in Figure 9 because the function uses registers for 
passing the input and output as well as local variables. For 
examples, $a0 is N, $t1 is A, $t2 is B, and $v0 is C. Note that 
we would use $v0 for N and $a0 for C like in Figure 7. In this 
case, we can also eliminate two MOVE instructions before and 
after the function call JNS in Figure 9. However, according to 
the register convention, $a0-$a4 are used for function inputs 
and $v0-$v1 are used for function outputs. It is important to 
follow the convention so that other programmers are able to 
understand your program. 

Table 10 Table 8: Comparison Results of the Four Programs 
Using LoopTable 7 shows comparison results of the four 
programs using function for 2A M2M, 2A R2R, 3A M2M, and 
3A R2R machines respectively. The numbers in Table 10 Table 
7are calculated assuming that the user input N is 10. For 
examples, NIMA for 2A M2M and 2A R2R machines is 
computed by 15N+2 and 15N+6, respectively. It is clear that 
R2R machines are better than M2M’s and 3A machines are 
better than 2A’s. 

Table 10: Comparison Results for Using Non-Recursive Function 

 NI LI PS NIMA NDMA TNMA 

2A M2M 32 39 1,248 152 303 455 

2A R2R 36 26 936 156 0 156 

3A M2M 16 56 896 56 143 199 

3A R2R 17 31 527 57 0 57 

 

3) Using a Recursive Function 
Figure 10Figure 11 shows 2A M2M code computing the 

Fibonacci number using a recursive function. The main routine 
in Figure 10 is the same as that in Figure 8. Only the recursive 
function Fib(N) is shown in Figure 10. Table 11 shows the stack 
frame of recursive function Fib in Figure 10. When Fib(N) is 
called, the input N is at $-1, the return address of Fib(N) is at $. 
Inside Fib(N), Fib(N-2) and Fib(N-1) are called recursively 
when N ≥ 2. Before Fib(N-2) is called, N-2 must be pushed on 
stack. So, the value $ of the stack point SP is increased by one. 
Therefore, right after calling Fib(N-2), the input N is at $-2 and 
the return address of Fib(N) is at $-1. It is Similar when Fib(N-
1) is called inside Fib(N). Please note that the value $ of the 
stack pointer must be restored before the function returns. 
Therefore, SP is decreased by two and the result Fib(N) is 
stored at $-1 before the Fib(N) returns.   

Table 11: Stack Frame of Recursive Function Fib in 2A M2M Code 

END 
//Instruction 
 READ    //INPUT = input N 
 PUSH  INPUT  //Push N on stack 
 JNS Fib  //call Fib 
 POP OUTPUT  //Pop result into OUTPUT 
 PRNT   //Print result 
 STOP   //Terminate  
Fib:  MOVE  $+3  $-1  //S = N 
 ADDI  $+3  -2  //S = N-2 
 BLTZ  $+3  L2  //If S < 0, done  
 LI  $+1  0  //A = 0 
 LI  $+2  1  //B = 1 
L1: MOVE  $-1  $+2   //C = B 
 ADD  $-1  $+1  //C = C + A 
 MOVE  $+1  $+2  //A = B 
 MOVE  $+2  $-1  //B = C 
 ADDI  $+3  -1  //S = S-1 
 BGEZ  $+3  L1  //If S >= 0, continue  
L2: JR 
END 
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END 
//Instruction 
 READ   //$v0 = N 
 MOVE $a0 $v0  //$a0 = $v0 
 JNS Fib   //$v0 = Fib(N) 
 MOVE $a0 $v0  //$a0=$v0 
 PRNT   //Print $a0 
 STOP    //Terminate 
Fib:  MOVE  $v0  $a0  //$v0(C) = $a0(N)  
 ADDI  $a0  -2  //N = N-2 
 BLTZ  $a0  L2  //If N<2, done 
 LI  $t1  0  //$t1(A) = 0 
 LI  $t2  1  //$t2(B) = 1 
L1: MOVE  $v0  $t2  //C = B 
 ADD   $v0  $t1  //C = C+A 
 MOVE  $t1  $t2  //A = B 
 MOVE  $t2  $v0  //B = C 
 ADDI  $a0  -1  //N = N-1 
 BGEZ  $a0  L1  //If N ≥ 0, continue 
L2: JR 
END 
10 



Address Content Explanation 

Fib(N) Fib(N-2) Fib(N-1) 

$-1 $-2 $-3 N/Fib(N) Input/output 

$ $-1 $-2 RA Return Address 

$+1 $ $-1 (N-2)/Fib(N-2) Input/output 

$+2 $+1 $ (N-1)/Fib(N-1) Input/output 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: 2A M2M Code Using Recursive Function 

Figure 11 shows 2A R2R code computing the Fibonacci 
number using a recursive function. The main routine in Figure 
11 is the same as that in Figure 10. Only the recursive function 
Fib(N) is shown in Figure 11. It takes an integer N saved in $a0 
as input and compute Fib(N) and save it in $v0 as output. Note 
that there must be a stack frame for any recursive function to 
save the return address at least. Aside from $a0 and $v0, the 
register $s0 is used to hold the result of Fib(N-2). So, the stack 
frame for this function contains three slots for saving $a0, $s0, 
and $ra, respectively. At the beginning of the recursive function 
shown in Figure 11, registers $a0, $s0, and $ra are pushed on 
stack. Right before the function returns, the three registers are 
restored and the stack remains the same as one before calling.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: 2A R2R Code Using Recursive Function 

Table 12Table 8: Comparison Results of the Four Programs 
Using LoopTable 7 shows comparison results of the four 
programs using recursive function for 2A M2M, 2A R2R, 3A 
M2M, and 3A R2R machines respectively. The numbers in 
Table 12 Table 7are calculated assuming that the user input N 
is 10. It is clear that R2R machines are better than M2M’s and 
3A machines are better than 2A’s. More importantly, the costs 
of non-recursive functions are much smaller than recursive 
functions.  

Table 12: Comparison Results for Using Recursive Function 

 NI LI PS NIMA NDMA TNMA 

2A M2M 30 39 1,170 2,567 5,751 8,318 

2A R2R 43 26 1,118 2,400 525 2,925 

3A M2M 18 56 1,008 1,155 3,282 4,437 

3A R2R 22 31 686 1,419 525 1,944 

 

IV. CONCLUSIONS 

In this paper, the four computer architecture simulators are 
presented as a continuation of paper [1] which presented stack-
based and accumulator-based computer architecture simulators. 
Several example assembly language programs are also given. 
These examples illustrate many basic programming concepts 
and techniques at the assembly language level. These include 
dealing with array, loop, stack, function call, function return, 
parameter passing, local variables, stack frame, and recursion. 
The sizes (numbers of instructions) and costs (numbers of 
instructions executed and numbers of data memory accesses 
performed) of these example programs are compared among 
different computer instruction formats. It is clear that R2R (3A) 
machine programs have smaller sizes and costs than M2M (2A) 
machine programs. The elegance of recursive functions come 
with a great cost of larger memory and longer execution time 
compared with non-recursive functions. In addition, recursive 
programming at assembly language level is very difficult. 

Currently, the pseudo-instructions MOVE and NEG use 
four instructions each in 2A machines, while they use one 
instruction each in 3A machines. So, adding MOVE and NEG 
in 2A instruction sets will reduce the size of 2A programs. 

Students can use these simulators for assembly language 
programming assignments. They can also modify these 
simulators to add more instructions and debugging tools. In 
addition, these simulated machines can serve as the compiler’s 
target machines for the code generation practice.   
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