
More on Computer Architecture Simulators for
Different Instruction Formats

Xuejun Liang
Department of Computer Science

California State University – Stanislaus
Turlock, CA 95382, USA

xliang@cs.scustan.edu

Abstract—Several simple computer architecture simulators are
developed and implemented for four different instruction formats,
including stack-based, accumulator-based, two-address, and three-
address machines. The simulators for the first two machines have
been reported in [1]. This paper will present details for the remaining
two instruction formats. These simulators can be used to assemble
and run assembly language programs on these architectures. Several
examples are given to illustrate how to develop assembly language
programs to deal with arrays, loops, subroutines, and recursions on
these different computer architectures. Students will have a better
understanding of computer architectures by using these simulators
on their assembly language programming assignments. In addition,
students can also modify these simulators to add more instructions,
debugging functions, and etc.

Keywords—Computer Architecture, Simulator, Instruction
Format, Assembly Language Programming

I. INTRODUCTION

Assembly language programming and writing, using and
modifying processor simulators are major hands-on assignment
categories in an undergraduate computer architecture course [2].
There are many computer architectures with different instruction
formats such as stack-based, accumulator-based, two-address,
or three-address machine. But, in general, only one architecture
will be chosen for teaching assembly language programming in
a computer architecture class or textbook. David A. Patterson
and John L. Hennessy uses MIPS in their textbook [3]. Kip
Irvine teaches x86 in his textbook [4]. Linda Null and Julia
Lobur uses the accumulator-based architecture and the MARIE
simulator [5]. On the other hand, although there are numerous
processor simulators available [6], most simulators are for the
research purpose and using them needs a big learning curve. It
is certainly desirable to have various simple simulators, each for
one major computer processor architecture, so that students can
program and compare these processors.

To this end, six simple computer architecture simulators are
designed and implemented for four different instruction formats,
including stack-based, accumulator-based, two-address (2A),
and three-address (3A) machines. The simulators for the first
two instruction formats have been reported in [1]. This paper
will present details for the remaining two instruction formats.
Both memory-to-memory (M2M) and register-to-register (R2R)

architectures are implemented for both 2A and 3A machines.
These simulators can be used to assemble and run assembly
language programs on these simulated computer architectures.
Several simple applications are used to illustrate how to develop
assembly language programs to deal with arrays, loops, stacks,
subroutines, and recursions on these computer architectures.

Students will have a better understanding of computer
architectures by using these simulators on their assembly
language programming exercises. Students can also modify
these simulators to add more instructions, debugging functions,
and etc. In addition, these simulated machines can serve as the
compiler’s target machines for the code generation practice.

This paper will present details for the 2A and 3A machines.
Please refer [1] for details on stack-based and accumulator-
based machines. In the rest of this paper, the simulated
instruction sets are presented in Second II. Assembly language
programming examples using these simulators are described in
Second III. Finally, Second IV concludes the paper.

II. INSTRUCTION SETS OF SIMULATED MACHINES

In simulated machines, all data are 32 bits and all addresses
and immediate data are 16 bits. All instructions in one simulated
machine are of the fixed word length which may be different for
different machines. Two separate memories are used for data
and instructions. Data are word addressable and a datum word is
32 bits. Instruction is also word addressable, but an instruction
word may not be 32 bits and it will depend on its particular
instruction format of simulated machine. So, each simulated
machine has 64K 32-bit words of data memory and 64K
instruction words of instruction memory.

In this paper, the notation M[A] represents the memory
content at memory address A. The acronym Imm stands for 16-
bit immediate number, PC for program counter, and SP for stack
pointer.

In all simulated machines, stack will grow toward higher
memory address. The stack pointer SP is a register in R2R
architectures, while it is a reserved memory location in M2M
architectures. Meanwhile, there are three additional reserved
memory locations in M2M architectures. They are ZERO for
constant 0, INPUT for input data, and OUTOUT for output data.

A. Two-Address Memory-to-Memory Instruction Set

The instruction set of the simulated 2A M2M machine
contains 19 instructions as shown in Table 1. It includes 1 load
immediate (LI) instruction, 6 integer arithmetic instructions, 1
load and 1 store (GET and PUT) instructions, 5 branch
instructions, 1 subroutine call and 1 subroutine return (JNS and
JR) instructions, 1 input and 1 output (READ and PRNT)
instructions, and finally, 1 stop instruction to terminate the
program.

In Table 1: 2A M2M Instruction Set, the symbol  means
assignment. The letters A and B indicate memory locations.
They can be a global variable name or a local variable in the
form of $+Imm whose memory address is M[SP]+Imm. So, the
instruction ADD A $+4 means M[A]  M[A] + M[M[SP]+4].
Note that M[SP] is the content of SP and is usually pointing to
the top of stack. JNS Label will save PC on stack and assign
Label to PC. JR will assign the top content on stack to PC and
remove it from stack.

Table 1: 2A M2M Instruction Set

 Instruction Meaning

0 LI A Imm M[A]  Imm

1 ADDI A Imm M[A]  M[A]+Imm

2 ADD A B M[A]  M[A]+M[B]

3 SUB A B M[A]  M[A]-M[B]

4 MUL A B M[A]  M[A]*M[B]

5 DIV A B M[A]  M[A]/M[B]

6 REM A B M[A]  M[A]%M[B]

7 GET A B M[A]  M[M[B]]

8 PUT A B M[M[B]]  M[A]

9 GOTO Label PC  Label

10 BEQZ A Label If M[A] = 0 GOTO Label

11 BNEZ A Label If M[A] ≠ 0 GOTO Label

12 BGEZ A Label If M[A] ≥ 0 GOTO Label

13 BLTZ A Label If M[A] < 0 GOTO Label

14 JNS Label M[SP] = M[SP]+1, M[M[SP]] = PC, &
PC  Label

15 JR PC  M[M[SP]] & M[SP] = M[SP]-1

16 READ M[INPUT]  Input

17 PRNT Display M[OUTPUT] on screen

18 STOP Terminate program

Table 2 shows four pseudo-instructions in which MOVE and
NEG are implemented by using four instructions each, while
PUSH and POP using 2 instructions each.

Table 2: Pseudo-Instructions of 2A M2M Machine

 Pseudo-Instruction Meaning

1 MOVE C A M[C]  M[A]

2 NEG A M[A]  -M[A]

3 POP A

M[A]  M[M[SP]]
M[SP]  M[SP] - 1

4 PUSH A M[SP]  M[SP] + 1

M[M[SP]]  M[A]

B. Three-Address Memory-to-Memory Instruction Set

The instruction set of the simulated 3A M2M machine has
19 instructions in which instructions 0, 9, 14-18 are the exactly
same with those of the simulated 2A M2M machine and the
remaining instructions are listed in Table 3. Note that if the
memory location C in instructions 1-6 in Table 3 is all replaced
by A and the C in instructions 7, 8, 10-13 in Table 3 is all
replaced by the reserved memory location ZERO, these
instructions are the same with those of the 2A M2M machine.
Therefore, the 2A M2M instruction set is a subset of the 3A
M2M instruction set.

Please note that pseudo-instructions in Table 2 are also
implemented in the 3A M2M machine, but MOVE and NEG are
implemented by using only one instruction each. In addition,
four more pseudo-instructions BEQZ, BNEZ, BGEZ, and BLTZ
are introduced as a short version of responding instructions. For
example, BEQZ A Label is really BEQ A ZERO Label.

Table 3: Remaining Instructions of 3A M2M Instruction Set

 Instruction Meaning

1 ADDI A C Imm M[A]  M[C]+Imm

2 ADD A C B M[A]  M[C]+M[B]

3 SUB A C B M[A]  M[C]-M[B]

4 MUL A C B M[A]  M[C]*M[B]

5 DIV A C B M[A]  M[C]/M[B]

6 REM A C B M[A]  M[C]%M[B]

7 GET A C B M[A]  M[C+M[B]]

8 PUT A C B M[C+M[B]]  M[A]

10 BEQ A C Label If M[A] = M[C] GOTO Label

11 BNE A C Label If M[A] ≠ M[C] GOTO Label

12 BGE A C Label If M[A] ≥ M[C] GOTO Label

13 BLT A C Label If M[A] < M[C] GOTO Label

C. Two-Address Register-to-Register Instruction Set

In the R2R architectures, 32 general purpose registers and
the MIPS register convention [4] as shown in Table 4 are used.

Table 4: MIPS Register Convention [4]

Name Number Usage

$zero $0 The constant value 0

$at $1 Reserved for assembler

$v0-$v1 $2-$3 Expression evaluation and results of a function

$a0-$a3 $4-$7 Argument 1-4

$t0-$t7 $8-$15 Temporary (not preserved across call)

$s0-$s7 $16-$23 Saved temporary (preserved across call)

$t8-$t9 $24-$25 Temporary (not preserved across call)

$k0-$k1 $26-$27 Reserved for OS kernel

$gp $28 Pointer to global area

$sp $29 Stack pointer

$fp $30 Frame pointer

$ra $31 Return address (used by function call)

The instruction set of the simulated 2A R2R machine has 19

instructions which can be simply obtained by replacing memory
locations A and B in the Instruction column of Table 1 with
registers R and R1 respectively, and replacing M[A] and M[B]
in the Meaning column of Table 1 with R and R1 respectively
as well. For examples, ADD R R1 means R  R+R1 and GET
R R1 means R  M[R1]. But, the instructions 14-17 in 2A R2R
have different meaning with their counterparts in Table 1 and
are listed in Table 5. The major differences between R2R and
M2M architectures are (1) the subroutine call instruction JNS
saves the return address in the register $ra in R2R, while it saves
the return address on stack in M2M, (2) the subroutine return
instruction JR gets the return address from $ra in R2R, while it
gets the return address from stack in M2M, (3) the input goes to
the register $v0 in R2R, while it goes to the reserved memory
location INPUT in M2M, and (4) the content for display is in the
register $a0 in R2R, while it is in the reserved memory location
OUTPUT. Note that this architecture is called R2R because all
arithmetic instructions are not allowed to access memory.

Table 5: Four Instructions 14-17 in 2A R2R Instruction Set

 Instruction Meaning

14 JNS Label $ra  PC & PC  Label

15 JR PC  $ra

16 READ $v0  Input

17 PRNT Print $a0

The four pseudo-instructions in Table 2 are implemented in

their register version in 2A R2R machine. MOVE and NEG use
four instructions each and PUSH and POP use two instructions
each. One additional pseudo-instruction LA R Var which loads
the address of the variable Var into the register R is implemented
by using one instruction only.

D. Three-Address Register-to-Register Instruction Set

The instruction set of the simulated 3A R2R machine has 19
instructions in which instructions 14-17 are the same with those
in Table 5 and other instructions except instructions 7-8 can be
simply obtained by replacing memory locations in Instruction
column and memory contents at memory locations in Meaning
column of Table 3 (Table 1) with registers. The two exceptional
instructions GET and PUT are listed in Table 6. The offset in
these two instructions is a 16-bit integer which can be a constant
or a variable name. It is easy to see that the instruction set of 3A
R2R is a superset of that of 2A R2R. 3A R2R also implements
all pseudo-instructions of 2A R2R.

Table 6: Two Instructions 7-8 in 3A R2R Instruction Set

 Instruction Meaning

7 GET R R1 Offset R  M[R1+Offset]

8 PUT R R1 Offset M[R1+Offset]  R

III. ASSEMLY LANGUAGE PROGRAM EXAMPLES

Any assembly language program of all simulated machines
consists of three parts: data section (optional), code section, and
input section (optional) separated by a key word END.

The data section is used for declaring variables in memory.
Each declaration takes one line and consists of ID, Type, and
Value. ID is a variable name, Type indicates number of words
the variable value has, and Value is optional initial value(s) of
the variable. The code section consists of assembly language
instructions. Each instruction takes one line and precedes an
optional label immediately followed by ‘:’ symbol. The input
section is used for providing user input data. One line contains
only one word (integer). In addition, users can add comments
starting from // symbol and until to the end of line. A comment
cannot cross multiple lines.

In the following subsections, two simple examples are used
to illustrate how to write assembly language programs to deal
with array, loop, function, and recursion for the simulated
machines. The first example is to compute sum of absolute
values of all elements in an array. The second example is to
compute Fibonacci number.

A. Sum of Absolute Values of Elements in Array

In this subsection, an array of integers and the length of the
array are given in the data section, the sum of absolute values of
elements in the array is computed, saved in the data section, and
displayed on screen. Figures 1-4 show the assembly language
programs for the four different computer architectures 2A M2M,
2A R2R, 3A M2M, and 3A R2R, respectively.

Figure 1: 2A M2M Code Using Array

These programs demonstrate how to declare variables in the
data section and how to write assembly instructions to access
array elements one by one and to control the loop iterations in
the code section.

For the array access, a pointer to the array is used for 2A
machines, while an array index and the array base address are
used for 3A machines. In each loop iteration, the point will be
increased to point to the next array element in 2A machine, while
the array index will be increased for the next array element in

//Decorations
PDAT 1 DAT //Pointer to the array DAT
SUM 1 0 //Sum
NUM 1 9 //Number of elements in the array
TMP 1 0 //Temporary location
DAT 9 10 20 30 -40 50 60 70 80 -90 //Array data
END
//Instructions
L1: BEQZ NUM L3 //If NUM=0, done
 GET TMP PDAT //Get an element from array
 BGEZ TMP L2 //If positive, skip
 NEG TMP //TMP = -TMP
L2: ADD SUM TMP //Add to sum
 ADDI NUM -1 //Decrease NUM by one
 ADDI PDAT 1 //Point to next array element
 GOTO L1 //Next iteration
L3: MOVE OUTPUT SUM //Print sum on screen
 PRNT
 STOP //Terminate program
END

3A machines. The variable PDAT in Figure 1 and the register
$s0 in Figure 2 are such pointers. The variable IND in Figure 3
and the register $t0 in Figure 4 are the array index. Note that the
array variable DAT reparents the base address of this array.

Figure 2: 2A R2R Code Using Array

Figure 3: 3A M2M Code Using Array

Figure 4: 3A R2R Code Using Array

For the loop control, the length of the array is used for 2A
machines. In each iteration, the length is deceased by one. When
the length becomes 0, the loop ends. The variable NUM in
Figure 1 and the register $t0 Figure 2 are the array length. On
the other hand, the array index that is used for accessing array is
also used for the loop control in 3A machines. In each iteration,
the index is increased by one. When the index becomes equal to
the array length, the loop ends.

Please note that the array access and loop control methods
used for 2A machines can be used for 3A machines as well, but
not vice versa. 2A machines can neither access the memory
using a base address plus offset nor branch based on comparing
two non-zero quantities. Please also note that 3A machine could
use the array length as the array index for both the loop control
like 2A machines and the array access like 3A machines. In this
case, the index variable can be omitted and the array element is
processed from the end to the beginning.

Aside from the differences between 2A and 3A machines,
there are some differences between R2R and M2M machines.
In general, M2M programs have less instructions than their
counterpart R2R programs. However, M2M programs have a
larger size and much more memory accesses than R2R. So R2R
machines have much better performance than M2M. Table 7
shows comparison results of the four programs using array for
2A M2M, 2A R2R, 3A M2M, and 3A R2R respectively.

In Table 7, the acronym NI is for number of instructions of
programs, LI for length of instruction, PS for program size,
NIMA for number of instructions fetched from memory during
execution, NDMA for number of data memory accesses during
execution, and TNMA for total number of memory accesses
during execution. Note that one pseudo-instruction may include
more than one instruction. Each instruction set is encoded in a
fixed instruction length in the implementation. The column LI
list numbers of bits required for encoding instructions for each
machine. These number of bits are used for computing the size
of programs. According to Table 7, 3A R2R machine is the best
among the four architectures. That is why almost all modern
processor architectures are 3A R2R.

Table 7: Comparison Results of the Four Programs Using Array

 NI LI PS NIMA NDMA TNMA

2A M2M 17 39 bits 663 bits 106 190 296

2A R2R 19 26 bits 494 bits 108 11 119

3A M2M 10 56 bits 560 bits 67 141 208

3A R2R 13 31 bits 403 bits 70 11 81

B. Compute Binonacci Numbers

Three methods will be used to compute Fibonacci numbers,
which is defined as bellow. The first is using a loop, the second
using a non-recursive function, and the third using a recursive
function.

//Declaration
SUM 1 0 //Sum
NUM 1 9 //Number of elements in the array
DAT 9 10 20 30 -40 50 60 70 80 -90 //Array data
END
//Instructions
 LA $s0 NUM //$s0 = address of NUM
 GET $t0 $s0 //$t0 = NUM
 LA $s0 DAT //$s0 = address of DAT
 LI $a0 0 //$a0(sum) = 0
L1: BEQZ $t0 L3 //If no remaining element, done
 GET $t1 $s0 //Get an array element into $t1
 BGEZ $t1 L2 //If positive, skip
 NEG $t1 //Else, negate $t1
L2: ADD $a0 $t1 //Add to $a0(sum)
 ADDI $t0 -1 //Decrease num of remaining elements
 ADDI $s0 1 //Next element
 GOTO L1 //Next iteration
L3: LA $s0 SUM //$s0 = address of SUM
 PUT $a0 $s0 //Save the sum to SUM
 PRNT //Print sum on screen
 STOP //Terminate program
END

//Declaration
//SUM, NUM, and DAT are the same as those in Figure 2
END
//Instructions
 LI $t0 0 //$t0(index) = 0
 GET $t1 $zero NUM //$t1 = NUM
 LI $a0 0 //$a0(sum)=0
L1: BEQ $t0 $t1 L3 //If index=NUM, done
 GET $t2 $t0 DAT //Get an array element
 BGE $t2 $zero L2 //If positive, skip
 NEG $t2 //Else, negate
L2: ADD $a0 $a0 $t2 //Add $t2 to $a0(sum)
 ADDI $t0 $t0 1 //Increase index
 GOTO L1 //Next iteration
L3: PUT $a0 $zero SUM //Save the sum to SUM
 PRNT //Print sum on screen
 STOP //Terminate program
END

//Declaration
IND 1 0 //Array index
//SUM, NUM, TMP, and DAT are the same as those in Figure 1
END
//Instructions
L1: BEQ IND NUM L3 //If IND=NUM, done
 GET TMP DAT IND //Get an array element
 BGE TMP ZERO L2 //If positive, skip
 NEG TMP //Else, negate
L2: ADD SUM SUM TMP //Add to sum
 ADDI IND IND 1 //Increase index IND by one
 GOTO L1 //Next iteration
L3: MOVE OUTPUT SUM //Move sum into OUTPUT
 PRNT //Print sum on screen
 STOP //Terminate program
END

𝐹𝑖𝑏(𝑁) = ൜
𝑁 𝑖𝑓 𝑁 < 2

𝐹𝑖𝑏(𝑁 − 1) + 𝐹𝑖𝑏(𝑁 − 2) 𝑖𝑓 𝑁 ≥ 2

.

Figure 5 shows C++ code that computes Fibonacci number
using a loop. The control constructs used in this C++ code will
be used (translated) in the assembly language programs later so
that comparisons can be made.

Figure 5: C++ Code: Compute Fibonacci Number Using Loop

In the following subsections, assembly language programs
for 2A machines will be illustrated only because programs for
3A machines are very similar with their 2A counterparts except
they use less instructions. It is assumed that the number N is a
user input in the following programs.

1) Using a Loop
Figure 6 shows the 2A M2M code computing the Fibonacci

number using a loop. In the data section, the same variables as
those in C++ code are declared. The program reads the input
and stores it in variable N. Then, it computes N-2 and checks if
N ≥ 2. If no, it stores the result in C, which is N itself, and goes
to print result. Otherwise, it computes the loop body (C = B+A;
A = B; B = C;), decreases N, and checks if N ≥ 0. If yes, it goes
to next loop iteration. If no, it exists the loop and prints the
result.

Figure 6: 2A M2M Code Using Loop

Figure 7 shows the 2A R2R code computing the Fibonacci
number using a loop. This code utilizes registers for variables
instead of memory locations. For examples, $v0 is N, $t1 is A,
$t2 is B, and $a0 is C. Note that the READ instruction will save
user input in $v0 and the PRNT instruction will display $a0.

Figure 7: 2A R2R Code Using Loop

Table 8: Comparison Results of the Four Programs Using
LoopTable 7 shows comparison results of the four programs
using loop for 2A M2M, 2A R2R, 3A M2M, and 3A R2R
machines respectively. The numbers in Table 8 Table 7are
calculated assuming that the user input N is 10. For examples,
NIMA for 2A M2M and 2A R2R machines is computed by
15N+2 and 15N-4, respectively. It is clear that R2R machines
are better than M2M’s and 3A machines are better than 2A’s.

Table 8: Comparison Results of the Four Programs Using Loop

 NI LI PS NIMA NDMA TNMA

2A M2M 32 39 1,248 152 299 451

2A R2R 26 26 676 146 0 146

3A M2M 13 56 728 53 132 185

3A R2R 13 31 403 53 0 53

2) Using a Non-Recursive Function

Figure 8 shows the 2A M2M code computing the Fibonacci
number using a non-recursive function. It takes an integer N as
input and compute Fib(N) as output. Note that the input N
should be pushed on stack just before calling the function and
the result Fib(N) should be stored on stack so that right after the
function returns, only the function result remains on the stack.

Note that the subroutine Fib shown in Figure 8 does not use
any push or pop instructions. Therefore, the stack point SP does
not change inside the subroutine Fib and thus there is no need
to restore the stack inside the subroutine.

Table 9 shows the stack frame of function Fib in Figure 8.
Right after the function call instruction JNS and right before the

//Declarations
N 1 0 //N
C 1 0 //Fib(N)
B 1 1 //Fib(N-1)
A 1 0 //Fib(N-2)
END
//Instruction
 READ //INPUT = Input N
 MOVE N INPUT //N = Input
 MOVE C N //C = N
 ADDI N -2 //N = N-2
 BLTZ N L2 //If N<2, done
L1: MOVE C B //C = B
 ADD C A //C = C + A
 MOVE A B //A = B
 MOVE B C //B = C
 ADDI N -1 //N--
 BGEZ N L1 //If N >=0
L2: MOVE OUTPUT C //OUTPUT = C
 PRNT //Print C
 STOP //Terminate
END
10

END
//Instruction
 READ //$v0 = N
 MOVE $a0 $v0 //$a0(C) = N
 ADDI $v0 -2 //$v0 = $v0-2
 BLTZ $v0 L2 //If N<2, done
 LI $t1 0 //$t1(A) = 0
 LI $t2 1 //$t2(B) = 1
L1: MOVE $a0 $t2 //$a0(C) = B,
 ADD $a0 $t1 //C = B+A
 MOVE $t1 $t2 //A = B
 MOVE $t2 $a0 //B = C
 ADDI $v0 -1 //N--
 BGEZ $v0 L1 //if N >= 0, continue
L2: PRNT //Print $a0 (C)
 STOP //Terminate
END
10

int main() { //compute Fib(N)
 int I, A, B, C, N
 std::cin >> N; //get input N, say 10.
 if (N < 2)
 C = N;
 else {
 A = 0; B = 1;
 for (I = 2; I <= N; I++) {
 C = B + A; A = B; B = C;
 }
 }

 std::cout << C;
 return 0;

}

function return instruction JR are executed, the stack pointer is
(should be) pointing to the return address on stack. One slot
below the return address on stack is used for input N and output
Fib(N) or C. The next three slots on the stack are for local
variables A, B, and S. Remember, the stack is growing toward
higher memory address. Here, local variable S at $+3 is used to
hold N-2 initially and then used for controlling the loop like
variable N as shown Figure 6.

Figure 8: 2A M2M Code Using Non-Recursive Function

Note that the subroutine Fib shown in Figure 8 does not use
any push or pop instructions. Therefore, the stack point SP does
not change inside the subroutine Fib and thus there is no need
to restore the stack inside the subroutine.

Table 9: Stack Frame of Function Fib in 2A M2M Code

Address Content Explanation

$-1 N/Fib(N)/C Iuput/Output

$ RA Return Address

$+1 A Local Variable

$+2 B Local Variable

$+3 S Local Variable

Figure 9: 2A R2R Code Using Non-Recursive Function

Figure 9 shows the 2A R2R code computing the Fibonacci
number using a non-recursive function. It takes an integer N
saved in $a0 as input and compute Fib(N) and save it in $v0 as
output. Note that there is no stack frame necessary for the
function Fib in Figure 9 because the function uses registers for
passing the input and output as well as local variables. For
examples, $a0 is N, $t1 is A, $t2 is B, and $v0 is C. Note that
we would use $v0 for N and $a0 for C like in Figure 7. In this
case, we can also eliminate two MOVE instructions before and
after the function call JNS in Figure 9. However, according to
the register convention, $a0-$a4 are used for function inputs
and $v0-$v1 are used for function outputs. It is important to
follow the convention so that other programmers are able to
understand your program.

Table 10 Table 8: Comparison Results of the Four Programs
Using LoopTable 7 shows comparison results of the four
programs using function for 2A M2M, 2A R2R, 3A M2M, and
3A R2R machines respectively. The numbers in Table 10 Table
7are calculated assuming that the user input N is 10. For
examples, NIMA for 2A M2M and 2A R2R machines is
computed by 15N+2 and 15N+6, respectively. It is clear that
R2R machines are better than M2M’s and 3A machines are
better than 2A’s.

Table 10: Comparison Results for Using Non-Recursive Function

 NI LI PS NIMA NDMA TNMA

2A M2M 32 39 1,248 152 303 455

2A R2R 36 26 936 156 0 156

3A M2M 16 56 896 56 143 199

3A R2R 17 31 527 57 0 57

3) Using a Recursive Function
Figure 10Figure 11 shows 2A M2M code computing the

Fibonacci number using a recursive function. The main routine
in Figure 10 is the same as that in Figure 8. Only the recursive
function Fib(N) is shown in Figure 10. Table 11 shows the stack
frame of recursive function Fib in Figure 10. When Fib(N) is
called, the input N is at $-1, the return address of Fib(N) is at $.
Inside Fib(N), Fib(N-2) and Fib(N-1) are called recursively
when N ≥ 2. Before Fib(N-2) is called, N-2 must be pushed on
stack. So, the value $ of the stack point SP is increased by one.
Therefore, right after calling Fib(N-2), the input N is at $-2 and
the return address of Fib(N) is at $-1. It is Similar when Fib(N-
1) is called inside Fib(N). Please note that the value $ of the
stack pointer must be restored before the function returns.
Therefore, SP is decreased by two and the result Fib(N) is
stored at $-1 before the Fib(N) returns.

Table 11: Stack Frame of Recursive Function Fib in 2A M2M Code

END
//Instruction
 READ //INPUT = input N
 PUSH INPUT //Push N on stack
 JNS Fib //call Fib
 POP OUTPUT //Pop result into OUTPUT
 PRNT //Print result
 STOP //Terminate
Fib: MOVE $+3 $-1 //S = N
 ADDI $+3 -2 //S = N-2
 BLTZ $+3 L2 //If S < 0, done
 LI $+1 0 //A = 0
 LI $+2 1 //B = 1
L1: MOVE $-1 $+2 //C = B
 ADD $-1 $+1 //C = C + A
 MOVE $+1 $+2 //A = B
 MOVE $+2 $-1 //B = C
 ADDI $+3 -1 //S = S-1
 BGEZ $+3 L1 //If S >= 0, continue
L2: JR
END
10

END
//Instruction
 READ //$v0 = N
 MOVE $a0 $v0 //$a0 = $v0
 JNS Fib //$v0 = Fib(N)
 MOVE $a0 $v0 //$a0=$v0
 PRNT //Print $a0
 STOP //Terminate
Fib: MOVE $v0 $a0 //$v0(C) = $a0(N)
 ADDI $a0 -2 //N = N-2
 BLTZ $a0 L2 //If N<2, done
 LI $t1 0 //$t1(A) = 0
 LI $t2 1 //$t2(B) = 1
L1: MOVE $v0 $t2 //C = B
 ADD $v0 $t1 //C = C+A
 MOVE $t1 $t2 //A = B
 MOVE $t2 $v0 //B = C
 ADDI $a0 -1 //N = N-1
 BGEZ $a0 L1 //If N ≥ 0, continue
L2: JR
END
10

Address Content Explanation

Fib(N) Fib(N-2) Fib(N-1)

$-1 $-2 $-3 N/Fib(N) Input/output

$ $-1 $-2 RA Return Address

$+1 $ $-1 (N-2)/Fib(N-2) Input/output

$+2 $+1 $ (N-1)/Fib(N-1) Input/output

Figure 10: 2A M2M Code Using Recursive Function

Figure 11 shows 2A R2R code computing the Fibonacci
number using a recursive function. The main routine in Figure
11 is the same as that in Figure 10. Only the recursive function
Fib(N) is shown in Figure 11. It takes an integer N saved in $a0
as input and compute Fib(N) and save it in $v0 as output. Note
that there must be a stack frame for any recursive function to
save the return address at least. Aside from $a0 and $v0, the
register $s0 is used to hold the result of Fib(N-2). So, the stack
frame for this function contains three slots for saving $a0, $s0,
and $ra, respectively. At the beginning of the recursive function
shown in Figure 11, registers $a0, $s0, and $ra are pushed on
stack. Right before the function returns, the three registers are
restored and the stack remains the same as one before calling.

Figure 11: 2A R2R Code Using Recursive Function

Table 12Table 8: Comparison Results of the Four Programs
Using LoopTable 7 shows comparison results of the four
programs using recursive function for 2A M2M, 2A R2R, 3A
M2M, and 3A R2R machines respectively. The numbers in
Table 12 Table 7are calculated assuming that the user input N
is 10. It is clear that R2R machines are better than M2M’s and
3A machines are better than 2A’s. More importantly, the costs
of non-recursive functions are much smaller than recursive
functions.

Table 12: Comparison Results for Using Recursive Function

 NI LI PS NIMA NDMA TNMA

2A M2M 30 39 1,170 2,567 5,751 8,318

2A R2R 43 26 1,118 2,400 525 2,925

3A M2M 18 56 1,008 1,155 3,282 4,437

3A R2R 22 31 686 1,419 525 1,944

IV. CONCLUSIONS

In this paper, the four computer architecture simulators are
presented as a continuation of paper [1] which presented stack-
based and accumulator-based computer architecture simulators.
Several example assembly language programs are also given.
These examples illustrate many basic programming concepts
and techniques at the assembly language level. These include
dealing with array, loop, stack, function call, function return,
parameter passing, local variables, stack frame, and recursion.
The sizes (numbers of instructions) and costs (numbers of
instructions executed and numbers of data memory accesses
performed) of these example programs are compared among
different computer instruction formats. It is clear that R2R (3A)
machine programs have smaller sizes and costs than M2M (2A)
machine programs. The elegance of recursive functions come
with a great cost of larger memory and longer execution time
compared with non-recursive functions. In addition, recursive
programming at assembly language level is very difficult.

Currently, the pseudo-instructions MOVE and NEG use
four instructions each in 2A machines, while they use one
instruction each in 3A machines. So, adding MOVE and NEG
in 2A instruction sets will reduce the size of 2A programs.

Students can use these simulators for assembly language
programming assignments. They can also modify these
simulators to add more instructions and debugging tools. In
addition, these simulated machines can serve as the compiler’s
target machines for the code generation practice.

REFERENCES
[1] Xuejun Liang, Computer Architecture Simulators for Different

Instruction Formats, in the proceedings of The 6th Annual Conference on
Computational Science and Computational Intelligence (CSCI 2019), pp.
806-811, Las Vegas, Nevada, USA, Dec 05-07, 2019

[2] Xuejun Liang, A survey of hands-on assignments and projects in
undergraduate computer architecture courses, in Proceedings of
International Joint Conferences on Computer, Information, and Systems
Sciences, and Engineering (CISSE 07), December 3-12, 2007.

END
//Instruction
//The main routine is the same as that in Figure 8
Fib: MOVE $+1 $-1 //$+1 = N
 ADDI $+1 -2 //$+1 = N-2
 BLTZ $+1 L1 //If N < 2, done
 ADDI SP 1 //PUSH N-2
 JNS Fib //Call F(N-2)
 MOVE $+1 $-2 //$+1 = N
 ADDI $+1 -1 //S+1 = N-1
 ADDI SP 1 //PUSH N-1
 JNS Fib //Call F(N-1)
 ADDI SP -2 //restore SP (or $)
 MOVE $-1 $+1 //F(N) = F(N-2) + F(N-1)
 ADD $-1 $+2
END
10

END
//Instruction
//The main routine is the same as that in Figure 9
//compute Fib(N)
Fib: PUSH $a0
 PUSH $s0
 PUSH $ra
 MOVE $v0 $a0 /$v0 = N
 ADDI $a0 -2 //$a0 = N-2
 BLTZ $a0 L2 //If N<2
 JNS Fib //Compute $v0 = Fib(N-2)
 MOVE $s0 $v0 //$s0 = Fib(N-2)
 ADDI $a0 1 //$a0 = N-1
 JNS Fib //Compute $v0 = Fib(N-1)
 ADD $v0 $s0 //$v0 = Fib(N-1) + Fib(N-2)
L2: POP $ra
 POP $s0
 POP $a0
 JR
END
10

[3] David A. Patterson and John L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 5th Edition, Morgan Kaufmann
Publishers, 2014.

[4] Kip Irvine, Assembly language for x86 processors – access card, 8th
Edition, Pearson, 2020

[5] Linda Null and Julia Lobur, The essentials of computer organization and
architecture, 5th Edition, Jones & Bartlett Learning, 2019

[6] Luke Yen, Min Xu, Milo Martin, Doug Burger, and Mark Hill, “WWW
Computer Architecture Page,” available from:
http://pages.cs.wisc.edu/~arch/www/

[7] Xuejun Liang, Loretta A. Moore, and Jacqueline Jackson, Programming
at different levels: a teaching module for undergraduate computer
architecture course, in Proceedings of the 2014 International Conference
on Frontiers in Education: Computer Science and Computer Engineering
(FECS’14), pp.77-83, Las Vegas, Nevada, USA, July 21-24, 2014.

