
Computer Architecture Simulators for Different
Instruction Formats

Xuejun Liang
Department of Computer Science

California State University – Stanislaus
Turlock, CA 95382, USA

xliang@cs.scustan.edu

Abstract—Several simple computer architecture simulators are
developed and implemented for different instruction formats,
including stack-based, accumulator-based, two-address, and three-
address machines. These simulators can be used to assemble and run
assembly language programs on the above computer architectures.
Several simple applications are used to illustrate how to develop
assembly language programs to deal with arrays, subroutines, and
recursions on these different computer architectures. Students will
have a better understanding of computer architectures by using these
simulators on their assembly language programming assignments.
In addition, students can also modify these simulators to add more
instructions, debugging functions, and etc.

Keywords—Computer Architecture, Simulator, Instruction
Format, Assembly Language Programming

I. INTRODUCTION

Assembly language programming and writing, using and
modifying processor simulators are major hands-on assignment
categories in an undergraduate computer architecture course [1].
There are many computer architectures with different instruction
formats such as stack-based, accumulator-based, two-address,
or three-address machine. But, in general, only one architecture
will be chosen for teaching assembly language programming in
a computer architecture class or textbook. David A. Patterson
and John L. Hennessy uses MIPS in their textbook [2]. Kip
Irvine teaches x86 in his textbook [3]. Linda Null and Julia
Lobur uses the accumulator-based architecture and the MARIE
simulator [4]. On the other hand, although there are numerous
processor simulators available [5], most simulators are for the
research purpose and using them needs a big learning curve. It
is certainly desirable to have various simple simulators, each for
one major computer processor architecture, so that students can
program and compare these processors.

To this end, six simple computer architecture simulators are
designed and implemented for different instruction formats,
including stack-based, accumulator-based, two-address, and
three-address machines. Both memory-to-memory and register-
to-register architectures are considered for the two-address and
three-address machines. These simulators can be used to
assemble and run assembly language programs on the above
simulated computer architectures. Several simple applications
are used to illustrate how to develop assembly language

programs to deal with arrays, subroutines, and recursions on
these computer architectures. Using these simulators to perform
their hands-on assembly language programming exercises,
students will be able to have a better understanding of computer
architectures. Students can also modify these simulators to add
more instructions, debugging functions, and etc. In addition,
these simulated machines can serve as the compiler’s target
machines for the code generation practice.

For the simplicity, the microarchitectures that will support
the execution of instructions of these simulated machines are not
considered. The instruction sets implemented in these simulators
contain only basic integer arithmetic, branch, stack, load, store,
subroutine call and return, input, and output. Due to the limit of
space, only stack-based and accumulator-based machines will
be reported in detail in this paper. In the rest of this paper, the
simulated instruction sets are presented in Second II. Several
assembly language programming examples using these
simulators are described in Second III. Finally, Second IV will
conclude the papers.

II. INSTRUCTION SETS OF SIMULATED MACHINES

In simulated machines, all data are 32 bits and all addresses
and immediate data are 16 bits. All instructions in one simulated
machine are of the fixed word length which may be different for
different machines. Two separate memories are used for data
and instructions. Data is word addressable and a datum word is
32 bits. Instruction is also word addressable, but an instruction
word may not be 32 bits and it will depend on its particular
instruction format of simulated machine. So, each simulated
machine has 64K 32-bit words of data memory and 64K
instruction words of instruction memory.

In this paper, the notation M[A] represents the memory
content at memory address A. The acronym Imm stands for 16-
bit immediate number, PC for program counter, SP for stack
pointer, FP for frame pointer, and AC for accumulator.

In all simulated machines, stack will grow towards higher
memory address. SP and FP are registers in stack-based, and
two-address register-to-register, and three-address register-to-
register machines, while SP is a reserved memory location and
FP is not available in accumulator-based, two-address memory-
to-memory, and three-address memory-to-memory machines.

A. Stack-Based (Zero-Address) Instruction Set

Table 1 lists all instructions of the simulated stack-based (or
zero-address) machine. This instruction set includes 5 integer
arithmetic instructions, 5 branch instructions, 1 subroutine call
and 1 return instructions, 10 stack operations, 2 instructions to
manipulate with SP and FP, 1 input and 1 output instructions,
and finally, 1 stop instruction to terminate the program.

The operational stack and activation record (stack frame) for
subroutine calls share the same stack inside the data memory.
The notation FP+Imm is used to indicate a local variable inside
an activation record (stack frame). It is a memory address in the
stack frame with offset Imm.

Table 1: Stack-Based Instruction Set

op Instruction Explanation

0 ADD Pop the top two addends, add, and push the sum

1 SUB Pop the subtrahend and minuend, subtract, and
push the difference

2 MUL Pop the multiplicand and multiplier, multiply,
and push the product

3 DIV Pop the dividend and divisor, divide, and push
the quotient

4 REM Pop the dividend and divisor, divide, and push
the remainder

5 GOTO Label Unconditionally jump to the instruction at
address Label

6 BEQZ Label Pop the top item and jump to Label if the
popped item is zero

7 BNEZ Label Pop the top item and jump to Label if the
popped item is not zero

8 BGEZ Label Pop the top item and jump to Label if the
popped item is greater than or equal to 0

9 BLTZ Label Pop the top item and jump to Label if the
popped item is less than 0

10 JNS Label Push the return address and transfer the control
to the instruction at address Label

11 JR nLoc Pop the return address into PC and decrement
SP by nLoc

12 PUSH FP Push the content of FP on stack

13 PUSH FP+Imm Push M[FP+Imm] on stack

14 PUSH Imm Push a 16-bit integer value Imm on stack

15 PUSH Var Push M[Var] on stack

16 PUSHI Var Push M[M[Var]] on stack

17 POP FP Pop the top item into FP from stack

18 POP FP+Imm Pop the top item into M[FP+Imm] from stack

19 POP Var Pop the top item into M[Var] from stack

20 POPI Var Pop the top item into M[M[Var]] from stack

21 SWAP Swaps the top two items on the stack

22 MOVE Copy content of SP into FP

23 ISP nLoc Increase/decrease SP by nLoc

24 READ Read an input and push it on stack

25 PRNT Print the top item on stack

26 STOP Terminate the program

B. Accumulator-Based (One-Address) Instruction Set

Table 2 lists all instructions of the simulated accumulator-
based (or one-address) machine. This instruction set includes 6
integer arithmetic instructions, 1 load immediate instruction, 5
branch instructions, 1 subroutine call and 1 return instructions,
1 GET and 1 GETI instructions, 1 PUT and 1 PUTI instructions,
1 input and 1 output instructions, and finally, 1 stop instruction
to terminate the program.

The symbol in Table 2 means assignment. Var in Table 2
indicates a memory location. It can be a global variable name or
a local variable in the form of $+Imm whose memory address is
M[SP]+Imm. So, the instruction ADD $+4 means AC AC +
M[M[SP]+4]. Note that M[SP] is the content of SP and is
usually pointing to the top of stack.

Table 2: Accumulator-Based Instruction Set

Op Instruction Meaning

0 LIMM Imm AC Imm

1 AIMM Imm AC AC+Imm

2 ADD Var AC AC+M[Var]

3 SUB Var AC AC-M[Var]

4 MUL Var AC AC*M[Var]

5 DIV Var AC AC/M[Var]

6 REM Var AC AC%M[Var]

7 GET Var AC M[Var]

8 PUT Var M[A] AC

9 GOTO Label PC Label

10 BEQZ Label If AC = 0 then PC Label

11 BNEZ Label If AC ≠ 0 then PC Label

12 BGEZ Label If AC ≥ 0 then PC Label

13 BLTZ Label If AC < 0 then PC Label

14 JNS Label Push the return address and PC Label

15 JR Pop the return address into PC

16 READ Read an input and save it to AC

17 PRNT Print AC

18 STOP Terminate the program

19 GETI Var AC M[M[Var]]

20 PUTI Var M[M[Var]] AC

The assembler of simulated one-address machine provides

three pseudo-instructions. POP will remove the top item of stack
by reducing the stack pointer SP’s value by 1. TOP A will only
return the value of the top item of stack to A without changing
stack. PUSH A will increase the stack pointer SP’s value by 1
first and then save the value of A on the top of stack.

III. ASSEMLY LANGUAGE PROGRAM EXAMPLES

Any assembly language program of all simulated machines
consists of three parts: data (optional), code, and input (optional)
separated by a key word END.

The data part is used for declaring variables in memory. Each
declaration takes one line and consists of ID, Type, and Value.
ID is a variable name, Type indicates number of words the

variable value has, and Value is optional initial values of the
variable. The code part is for assembly language instructions.
Each instruction takes one line and precedes an optional label
immediately followed by ‘:’ symbol. The input part is used for
providing user input data. One input line contains only one word
(integer). In addition, users can add comments starting from //
symbol and until to the end of line. A comment cannot cross
multiple lines.

In the following subsections, two simple examples are used
to illustrate how to write assembly language programs to deal
with array, function, and recursion for the simulated machines.
The first example is to compute sum of absolute values of all
elements in an array. The second example is to compute
Fibonacci number, which is defined by

𝐹𝑖𝑏(𝑁) =
𝑁 𝑖𝑓 𝑁 < 2

𝐹𝑖𝑏(𝑁 − 1) + 𝐹𝑖𝑏(𝑁 − 2) 𝑖𝑓 𝑁 ≥ 2

A. Sum of Absolute Values of Elements in Array

Figure 1 Shows stack-based assembly language program to
compute the sum of absolute values of array elements. In the
data section, an array variable DAT with 9 integers is declared
and initialized. Five other variables are also declared. The loop
starts by checking if N-I = 0. If yes, the program will exit the
loop and print the result. Otherwise, the program adds one array
element’s absolute value to SUM and then increase the array
index I and the array pointer PDAT for the next loop iteration.

Figure 2 shows accumulator-based assembly language code
to compute the sum of absolute values of array elements. This
program has the same data section as that in the stack-based
program. It also applys the same algorithm to compute the sum.
The difference is that the stack-based program needs to push the
the two input data on stack for an operation and to get the result
from stack, while the accumulator-based program needs to load
one of the two input data for an operation into accumulator AC
and to get the result from AC.

B. Binonacci Numbers

Three methods will be used to compute Fibonacci numbers.
The first is using a loop, the second using a function, and the
third using a recursive function.

1) Using a Loop,
 Figure 3 shows C++ code that computes Fibonacci number

using a loop. The algorithm used in this C++ code will be used
(translated) in the assembly language programs later so that
comparisons can be made.

//Data
//Same as that in Figure 1.
END
//Code
L1: GET N
 SUB I //N-I
 BEQZ L3 //if (N-I)=0, done
 GETI PDAT //get an array element into AC
 BGEZ L2 //if positive, skip
 PUT TMP //else, negate
 LIMM 0
 SUB TMP
L2: ADD SUM //add to sum
 PUT SUM
 GET I //increase index I by one
 AIMM 1
 PUT I
 GET PDAT //increase array address by one
 AIMM 1
 PUT PDAT
 GOTO L1 //next element
L3: GET SUM //print sum
 PRNT
 STOP //terminate program
END

//Data
I 1 0 //array index
SUM 1 0 //sum
N 1 9 //number of elements in the array
TMP 1 0 //temporary location
PDAT 1 DAT //pointer to the array DAT
DAT 9 10 20 30 -40 50 60 70 80 -90 //array DAT
END
//Code
L1: PUSH N
 PUSH I
 SUB //N-I
 BEQ L3 //if (N-I)=0, done
 PUSHI PDAT //get an array element
 PUSHI PDAT //get the array element again
 BGEZ L2 //if positive, skip
 PUSH 0 //else, negate
 SWAP
 SUB
L2: PUSH SUM //add to sum
 ADD
 POP SUM
 PUSH I //increase index I by one
 PUSH 1
 ADD
 POP I
 PUSH PDAT //increase array address by one
 PUSH 1
 ADD
 POP PDAT
 GOTO L1 //next element
L3: PUSH SUM //print sum
 PRNT
 STOP //stop
END

Figure 1: Stack-Based (Zero-Address) Code Using Array

Figure 2: Accumulator-Based Code Using Array

Figure 3: C++ Code: Compute Fibonacci Number

int main() { //compute Fib(N)
 int I, A, B, C, N
 std::cin >> N; //get input N, say 10.
 if (N < 2)
 C = N;
 else {
 A = 0; B = 1;
 for (I = 2; I <= N; I++) {
 C = B + A; A = B; B = C;
 }
 }

 std::cout << C;
 return 0;

}

Figure 4 shows the stack-based code to compute Fibonacci
number using a loop. In the data section, the same variables as
those in C++ code are declared. The program reads the input
and stores it in variable N. Then, it computes N-2 and checks if
N ≥ 2. If no, it stores the result in C, which is N itself, and goes
to print result. Otherwise, it computes the loop body (C = B+A;
A = B; B = C;), increases loop index I, and checks if I ≤ N. If
yes, it goes to next loop iteration. If no, it exists the loop and
prints the result.

Figure 5 Shows accumulator-based assembly language code
to compute Fibonacci number. This program has the same data
section as that in the stack-based program. It applies the same
loop algorithm. Here, N-1 is computed to check if N < 2, instead
of computing N-2. Another difference is that the stack-based
program needs to push the data on stack for computation, while
the accumulator-based program needs to load one of the input
data into accumulator AC for computation.

2) Using a Non-Recursive Function

Now, consider writing a non-recursive function Fib to
compute Fibonacci number. It takes an integer N as input and
compute Fib(N) as output. Note that the input N should be
pushed on stack just before calling the function and the result

Fib(N) should be stored on stack so that right after the function
returns, only the function result remains on the stack. Table 3
shows the stack frame of the function Fib. It contains input
N/output Fib(N), return address, and four local variables.

Table 3: Stack Frame of Function Fib

Address Content Explanation

FP-1 N/Fib(N) Before call Fib(N)/after Fib(N) return

FP RA Return Address

FP+1 I Local variable

FP+2 A Local variable

FP+3 B Local variable

FP+4 C Local variable

Figure 6 shows stack-based code to compute Fibonacci
number using a non-recursive function. The read instruction
reads input and push it on top of stack. So, this program reads
input and then calls the function Fib immediately. After the
function returns, the print instruction prints the result on top of
stack.

Note that JNS instruction pushes return address on stack.
The first instruction of the subroutine Fib copies SP into FP.
So, FP points to the function return address and the input N is
pointed by FP-1. The next four sluts on stack are used for the
four local variables. Note that I, A, B, and C in the content
column in Table 3 are used to compare with variable names of
program in Figure 4. No local variable names can be defined,
instead, FP+Imm is used to represent local variable location.

Note that Fib(N)=N when N<2. So, there is no need to store
result on stack when N < 2 as it is already there. Meanwhile,

//Data
I 1 1 //index
N 1 0 //N
C 1 0 //Fib(N)
B 1 1 //Fib(N-1)
A 1 0 //Fib(N-2)
END
//Code

READ //read input
POP N //N=input
PUSH N
PUSH 2
SUB //N-2
BGEZ L1 //if N>=2 go to loop body
PUSH N
POP C //C=N
GOTO L2 //go to print result

L1: PUSH B //beginning of loop body
PUSH A
ADD
POP C //C = B+A
PUSH B
POP A //A = B
PUSH C
POP B //B = C
PUSH I
PUSH 1
ADD
POP I //I = I+1
PUSH I
PUSH N
SUB //I-N
BLTZ L1 //if I<N go to loop body

L2: PUSH C //print result
PRNT
STOP //terminate program

END
//Input
10 //N

//Data

//Same as that in Figure 4
//Code

READ //read input
PUT N //N=input
PUT C //C=N
SUB I //AC=N-1
BLTZ L2 //if N<1 done
BEQZ L2 //if N=1 done

L1: GET B //beginning of loop body
ADD A //AC=B+A
PUT C //C=B+A
GET B //AC=B
PUT A //A=B
GET C //AC=C
PUT B //B=C
GET I //AC=I
AIMM 1 //AC=I+1
PUT I //I=I+1
SUB N //AC=I-N
BLTZ L1 //if I<N go to loop body.

L2: GET C //print result
PRNT
STOP //terminate program
END

//inputs
10 //N

Figure 4: Stack-Based Code Using a Loop

Figure 5: Accumulator-Based Code Using a Loop

right before Fib returns, the result should be stored on stack at
FP-1 and SP should point to the return address. Instructions
POP FP-1 and ISP -3 in Figure 6 are to achieve these.

Figure 7 shows the main program of accumulator-based
code to compute Fibonacci number using a non-recursive
function. Figure 8 shows the function Fib. This program has the
same stack frame of function Fib as shown in Table 3 except
the frame pointer FP is replaced by the $ symbol. The main
program reads input, pushes it on stack, and then calls the
subroutine Fib. When the subroutine returns, it pops the result
off stack and prints the result. The subroutine Fib code is very
much like the code shown in Figure 5.

Note that the subroutine Fib shown in Figure 8 does not use
any push instructions. Therefore, the stack point SP does not
change inside the subroutine and then there is no to use pop
instructions to restore the stack.

3) Using a Recursive Function
Table 4 shows the stack frame of recursive function Fib.

Before the function call, the input N should be pushed on stack.
Then function call pushes the return address on stack. As shown
in Figure 9, the subroutine will push the previous frame point
FP on stack to save it as successive calls will change FP. The
next two sluts in the stack frame at FP+1 and FP+2 are for
successive calls. Before the function returns, the result is stored
on stack frame at FP-2 and previous FP is restored.

Table 4: Stack Frame of Recursive Function Fib (Stack)

Address Content Explanation

FP-2 N/Fib(N) Before call Fib(N)/after Fib(N) return

FP-1 RA Return Address

FP Prior FP Previous FP

FP+1 (N-1)/Fib(N-1) Before call Fib(N-1)/after Fib(N-1) return

FP+2 (N-2)/Fib(N-2) Before call Fib(N-2)/after Fib(N-2) return

//No data
END
//Code

READ
JNS Fib //call Fib
PRNT //print result
STOP //terminate program

Fib: MOVE FP SP
PUSH 1 //I=1
PUSH 0 //A=0
PUSH 1 //B=1
PUSH 0 //C=0
PUSH FP-1 //N
PUSH 2 //2
SUB //N-2
BGEZ L1 // if N>=2 go to loop body
GOTO L2 //Fib(N)=N if N<2

L1: PUSH FP+3 //beginning of loop body
PUSH FP+2
ADD
POP FP+4 //C=B+A
PUSH FP+3
POP FP+2 //A=B
PUSH FP+4
POP FP+3 //B=C
PUSH FP+1
PUSH 1
ADD
POP FP+1 //I=I+1
PUSH FP+1
PUSH FP-1
SUB //I-N
BLTZ L1 //if I<N go to loop body
POP FP-1 //Store result at FP-1

L2: ISP -3 //restore the stack
JR 0 //return

END
//Inputs
10 //N=10

//Data
N 1 0 //N: input
C 1 0 //C: result of fib(N)
END
//Code
//main program

READ //read input
PUT N //N=input
PUSH N //push N on stack
JNS Fib //call Fib
TOP C //get and save fib(N)
POP //restore stack
GET C //get Fib(N) from C
PRNT //print Fib(N)
STOP //terminate program

Fib: LIMM 1
PUT $+1 //I=1
PUT $+3 //B=1
AIMM -1
PUT $+2 //A=0
GET $-1 //AC=N
SUB $+1 //AC=N-1
BLTZ L3 //if N<1 done
BEQZ L3 //if N=1 done

L2: GET $+3 //beginning of loop body
ADD $+2 //AC=B+A
PUT $+4 //C=B+A
GET $+3 //AC=B
PUT $+2 //A=B
GET $+4 //AC=C
PUT $+3 //B=C
GET $+1 //AC=I
AIMM 1 //AC=I+1
PUT $+1 //I=I+1
SUB $-1 //AC=I-N
BLTZ L2 //if I<N go to loop body
GET $+4 //AC=C
PUT $-1 //store result on stack

L3: JR
END
10

Figure 6: Stack-Based Code Using Non-Recursive
Function

Figure 7: Accumulator-Stack-Based Code Using Non-
Recursive Function (1)

Figure 8: Accumulator-Stack-Based Code Using Non-
Recursive Function (2)

Table 5 shows the stack frame of recursive function Fib for
accumulator-based machine. Before the function call, the input
N should be pushed on stack. Then the function call from main
program pushes the return address on stack. The next two sluts
in the stack frame are for successive calls Fib(N-1) and Fib(N-
2), respectively. The first column of address in Table 5 shows
the use of stack frame for function Fib(N).

Note that in order to call Fib(N-1) within Fib(N), the stack
pointer should point to N-1. This requires that SP increase by 1
before calling Fib(N-1). So, the value of $ is also increased by
1 as shown in the second column of address. Similarly, right
before calling Fib(N-2), SP and therefore $ are increased by 1
again as shown in the third column of address. Finally, the last
column in Table 5 is similar to the last column in Table 4.

Table 5: Stack Frame of Recursive Function Fib (Accumulator)

Address Content Explanation

Fib(N) Fib(N-1) Fib(N-2)

$-1 $-2 $-3 N/Fib(N) before/after

$ $-1 $-2 RA Return Address

$+1 $ $-1 (N-1)/Fib(N-1) before/after

$+2 $+1 $ (N-2)/Fib(N-2) before/after

IV. CONCLUSIONS

In this paper, several computer architecture simulators are
presented. Several example assembly language programs are
also given. These examples illustrate many basic programming
concepts and techniques at the assembly language level. These
include dealing with array, loop, stack, function call and return,
parameter passing, local variables, and recursion. Because these
simulated machines contain very simple similar instruction set
and have the same assembly language program structure, it is
convenient to compare assembly language programming details
among different computer instruction formats. For example, to

support the use of array, the processor without general purpose
registers should provide indirect memory access instructions
such as PUSHI and GETI. Owing to the space, two-address and
three-address (memory-to-memory and register-to-register)
machine simulators are not presented here. In register-to-
register machine, stack frame may not be needed for a non-
recursive subroutine. In a three-address machine, an assembly
language program uses a smaller number of instructions than
zero- or one-address machines.

Students can use these simulators for assembly language
programming assignments. They can also modify these
simulators to add more instructions and debugging tools. In
addition, these simulated machines can serve as the compiler’s
target machines for the code generation practice.

REFERENCES
[1] Xuejun Liang, A survey of hands-on assignments and projects in

undergraduate computer architecture courses, in Proceedings of
International Joint Conferences on Computer, Information, and Systems
Sciences, and Engineering (CISSE 07), December 3-12, 2007.

[2] David A. Patterson and John L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 5th Edition, Morgan Kaufmann
Publishers, 2014.

[3] Kip Irvine, Assembly language for x86 processors – access card, 8th
Edition, Pearson, 2020

[4] Linda Null and Julia Lobur, The essentials of computer organization and
architecture, 5th Edition, Jones & Bartlett Learning, 2019

[5] Luke Yen, Min Xu, Milo Martin, Doug Burger, and Mark Hill, “WWW
Computer Architecture Page,” available from:
http://pages.cs.wisc.edu/~arch/www/

[6] Xuejun Liang, Loretta A. Moore, and Jacqueline Jackson, Programming
at different levels: a teaching module for undergraduate computer
architecture course, in Proceedings of the 2014 International Conference
on Frontiers in Education: Computer Science and Computer Engineering
(FECS’14), pp.77-83, Las Vegas, Nevada, USA, July 21-24, 2014.

//compute Fib(N)
Fib: PUSH FP
 MOVE FP SP //FP=SP
 PUSH FP-2 //N
 PUSH 2 //2
 SUB //N-2
 BGEZ L1 //N>=2
 GOTO L2 //Fib(N)=N if N<2
L1: PUSH FP-2 //N
 PUSH 1 //1
 SUB //N-1
 JNS Fib //call Fib(N-1)
 PUSH FP-2 //N
 PUSH 2 //2
 SUB //N-2
 JNS Fib //call Fib(N-2)
 ADD //Fib(N-1)+Fib(N-2)
 POP FP-2 //store result at FP-2
L2: POP FP //restore previous FP
 JR 0
 END
//Inputs
10 //N=10

Figure 9: Stack-Based Recursive Function Fib

//compute Fib(N)
Fib: GET $-1 //AC=N
 BNEZ L1 //Fib(N)=0 if N=0
 GOTO L3 //done
L1: AIMM -1 //AC=N-1
 BNEZ L2 //Fib(N)=1 if N=1
 GOTO L3 //done
L2: PUT $+1 //store N-1 to $+1
 GET SP //AC=SP
 AIMM 1 //AC=SP+1
 PUT SP //increase SP ($) by 1
 JNS Fib //call Fib(N-1)
 GET $-2 //AC=N
 AIMM -2 //AC=N-2
 PUT $+1 //store N-2 to $+1
 GET SP //AC=SP
 AIMM 1 //AC=SP+1
 PUT SP //increase SP ($) by 1
 JNS Fib //Call Fib(N-2)
 GET SP //AC=SP
 AIMM -2 //AC=SP-2
 PUT SP //restore SP
 GET $+1 //AC=Fib(N-1)
 ADD $+2 //AC=Fib(N-1)+Fib(N-2)
 PUT $-1 //store Fib(N) to $-1
L3: JR
END
10 //Input 10

Figure 10: Accumulator-Based Recursive Function Fib

