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Abstract—Several simple computer architecture simulators are 
developed and implemented for different instruction formats, 
including stack-based, accumulator-based, two-address, and three-
address machines. These simulators can be used to assemble and run 
assembly language programs on the above computer architectures. 
Several simple applications are used to illustrate how to develop 
assembly language programs to deal with arrays, subroutines, and 
recursions on these different computer architectures. Students will 
have a better understanding of computer architectures by using these 
simulators on their assembly language programming assignments. 
In addition, students can also modify these simulators to add more 
instructions, debugging functions, and etc. 

Keywords—Computer Architecture, Simulator, Instruction 
Format, Assembly Language Programming 

I. INTRODUCTION 

Assembly language programming and writing, using and 
modifying processor simulators are major hands-on assignment 
categories in an undergraduate computer architecture course [1]. 
There are many computer architectures with different instruction 
formats such as stack-based, accumulator-based, two-address, 
or three-address machine. But, in general, only one architecture 
will be chosen for teaching assembly language programming in 
a computer architecture class or textbook. David A. Patterson 
and John L. Hennessy uses MIPS in their textbook [2]. Kip 
Irvine teaches x86 in his textbook [3]. Linda Null and Julia 
Lobur uses the accumulator-based architecture and the MARIE 
simulator [4]. On the other hand, although there are numerous 
processor simulators available [5], most simulators are for the 
research purpose and using them needs a big learning curve. It 
is certainly desirable to have various simple simulators, each for 
one major computer processor architecture, so that students can 
program and compare these processors. 

To this end, six simple computer architecture simulators are 
designed and implemented for different instruction formats, 
including stack-based, accumulator-based, two-address, and 
three-address machines. Both memory-to-memory and register- 
to-register architectures are considered for the two-address and 
three-address machines. These simulators can be used to 
assemble and run assembly language programs on the above 
simulated computer architectures. Several simple applications 
are used to illustrate how to develop assembly language 

programs to deal with arrays, subroutines, and recursions on 
these computer architectures. Using these simulators to perform 
their hands-on assembly language programming exercises, 
students will be able to have a better understanding of computer 
architectures. Students can also modify these simulators to add 
more instructions, debugging functions, and etc. In addition, 
these simulated machines can serve as the compiler’s target 
machines for the code generation practice. 

For the simplicity, the microarchitectures that will support 
the execution of instructions of these simulated machines are not 
considered. The instruction sets implemented in these simulators 
contain only basic integer arithmetic, branch, stack, load, store, 
subroutine call and return, input, and output. Due to the limit of 
space, only stack-based and accumulator-based machines will 
be reported in detail in this paper. In the rest of this paper, the 
simulated instruction sets are presented in Second II. Several 
assembly language programming examples using these 
simulators are described in Second III. Finally, Second IV will 
conclude the papers.  

II. INSTRUCTION SETS OF SIMULATED MACHINES 

In simulated machines, all data are 32 bits and all addresses 
and immediate data are 16 bits. All instructions in one simulated 
machine are of the fixed word length which may be different for 
different machines. Two separate memories are used for data 
and instructions. Data is word addressable and a datum word is 
32 bits. Instruction is also word addressable, but an instruction 
word may not be 32 bits and it will depend on its particular 
instruction format of simulated machine. So, each simulated 
machine has 64K 32-bit words of data memory and 64K 
instruction words of instruction memory.  

In this paper, the notation M[A] represents the memory 
content at memory address A. The acronym Imm stands for 16-
bit immediate number, PC for program counter, SP for stack 
pointer, FP for frame pointer, and AC for accumulator.  

In all simulated machines, stack will grow towards higher 
memory address. SP and FP are registers in stack-based, and 
two-address register-to-register, and three-address register-to-
register machines, while SP is a reserved memory location and 
FP is not available in accumulator-based, two-address memory-
to-memory, and three-address memory-to-memory machines. 



A. Stack-Based (Zero-Address) Instruction Set 

Table 1 lists all instructions of the simulated stack-based (or 
zero-address) machine. This instruction set includes 5 integer 
arithmetic instructions, 5 branch instructions, 1 subroutine call 
and 1 return instructions, 10 stack operations, 2 instructions to 
manipulate with SP and FP, 1 input and 1 output instructions, 
and finally, 1 stop instruction to terminate the program. 

The operational stack and activation record (stack frame) for 
subroutine calls share the same stack inside the data memory. 
The notation FP+Imm is used to indicate a local variable inside 
an activation record (stack frame). It is a memory address in the 
stack frame with offset Imm.   

Table 1: Stack-Based Instruction Set 

op Instruction Explanation 

0 ADD     Pop the top two addends, add, and push the sum 

1 SUB      Pop the subtrahend and minuend, subtract, and 
push the difference 

2 MUL    Pop the multiplicand and multiplier, multiply, 
and push the product 

3 DIV      Pop the dividend and divisor, divide, and push 
the quotient 

4 REM     Pop the dividend and divisor, divide, and push 
the remainder 

5 GOTO  Label Unconditionally jump to the instruction at 
address Label 

6 BEQZ  Label Pop the top item and jump to Label if the 
popped item is zero 

7 BNEZ  Label Pop the top item and jump to Label if the 
popped item is not zero 

8 BGEZ  Label Pop the top item and jump to Label if the 
popped item is greater than or equal to 0 

9 BLTZ  Label Pop the top item and jump to Label if the 
popped item is less than 0 

10 JNS  Label Push the return address and transfer the control 
to the instruction at address Label 

11 JR  nLoc Pop the return address into PC and decrement 
SP by nLoc 

12 PUSH  FP Push the content of FP on stack 

13 PUSH  FP+Imm Push M[FP+Imm] on stack 

14 PUSH  Imm Push a 16-bit integer value Imm on stack 

15 PUSH  Var Push M[Var] on stack 

16 PUSHI  Var Push M[M[Var]] on stack 

17 POP  FP Pop the top item into FP from stack 

18 POP  FP+Imm Pop the top item into M[FP+Imm] from stack 

19 POP  Var Pop the top item into M[Var] from stack 

20 POPI  Var Pop the top item into M[M[Var]] from stack 

21 SWAP Swaps the top two items on the stack 

22 MOVE Copy content of SP into FP 

23 ISP  nLoc Increase/decrease SP by nLoc 

24 READ Read an input and push it on stack 

25 PRNT Print the top item on stack  

26 STOP Terminate the program 

 

 

B. Accumulator-Based (One-Address) Instruction Set 

Table 2 lists all instructions of the simulated accumulator-
based (or one-address) machine. This instruction set includes 6 
integer arithmetic instructions, 1 load immediate instruction, 5 
branch instructions, 1 subroutine call and 1 return instructions, 
1 GET and 1 GETI instructions, 1 PUT and 1 PUTI instructions, 
1 input and 1 output instructions, and finally, 1 stop instruction 
to terminate the program. 

The symbol  in Table 2 means assignment. Var in Table 2 
indicates a memory location. It can be a global variable name or 
a local variable in the form of $+Imm whose memory address is 
M[SP]+Imm. So, the instruction ADD $+4 means AC  AC + 
M[M[SP]+4]. Note that M[SP] is the content of SP and is 
usually pointing to the top of stack.  

Table 2: Accumulator-Based Instruction Set 

Op Instruction Meaning 

0 LIMM Imm  AC  Imm          

1 AIMM Imm  AC  AC+Imm 

2 ADD   Var  AC  AC+M[Var] 

3 SUB    Var  AC  AC-M[Var] 

4 MUL   Var AC  AC*M[Var] 

5 DIV     Var AC  AC/M[Var] 

6 REM   Var  AC  AC%M[Var] 

7 GET    Var  AC  M[Var] 

8 PUT    Var M[A]  AC 

9 GOTO Label PC  Label 

10 BEQZ  Label If AC = 0 then PC  Label 

11 BNEZ  Label If AC ≠ 0 then PC  Label 

12 BGEZ  Label If AC ≥ 0 then PC  Label 

13 BLTZ  Label If AC < 0 then PC  Label 

14 JNS     Label Push the return address and PC  Label 

15 JR    Pop the return address into PC 

16 READ Read an input and save it to AC  

17 PRNT Print AC 

18 STOP Terminate the program 

19 GETI  Var  AC  M[M[Var]] 

20 PUTI  Var M[M[Var]]  AC 

 
The assembler of simulated one-address machine provides 

three pseudo-instructions. POP will remove the top item of stack 
by reducing the stack pointer SP’s value by 1. TOP A will only 
return the value of the top item of stack to A without changing 
stack. PUSH A will increase the stack pointer SP’s value by 1 
first and then save the value of A on the top of stack.    

III. ASSEMLY LANGUAGE PROGRAM EXAMPLES 

Any assembly language program of all simulated machines 
consists of three parts: data (optional), code, and input (optional) 
separated by a key word END.  

The data part is used for declaring variables in memory. Each 
declaration takes one line and consists of ID, Type, and Value. 
ID is a variable name, Type indicates number of words the 



variable value has, and Value is optional initial values of the 
variable. The code part is for assembly language instructions. 
Each instruction takes one line and precedes an optional label 
immediately followed by ‘:’ symbol. The input part is used for 
providing user input data. One input line contains only one word 
(integer). In addition, users can add comments starting from // 
symbol and until to the end of line. A comment cannot cross 
multiple lines. 

In the following subsections, two simple examples are used 
to illustrate how to write assembly language programs to deal 
with array, function, and recursion for the simulated machines. 
The first example is to compute sum of absolute values of all 
elements in an array. The second example is to compute 
Fibonacci number, which is defined by    

𝐹𝑖𝑏(𝑁) =
𝑁                                               𝑖𝑓 𝑁 < 2

𝐹𝑖𝑏(𝑁 − 1) + 𝐹𝑖𝑏(𝑁 − 2)  𝑖𝑓 𝑁 ≥ 2
 

A. Sum of Absolute Values of Elements in Array 

Figure 1 Shows stack-based assembly language program to 
compute the sum of absolute values of array elements. In the 
data section, an array variable DAT with 9 integers is declared 
and initialized. Five other variables are also declared. The loop 
starts by checking if N-I = 0. If yes, the program will exit the 
loop and print the result. Otherwise, the program adds one array 
element’s absolute value to SUM and then increase the array 
index I and the array pointer PDAT for the next loop iteration.   

Figure 2 shows accumulator-based assembly language code 
to compute the sum of absolute values of array elements. This 
program has the same data section as that in the stack-based 
program. It also applys the same algorithm to compute the sum. 
The difference is that the stack-based program needs to push the 
the two input data on stack for an operation and to get the result 
from stack, while the accumulator-based program needs to load 
one of the two input data for an operation into accumulator AC 
and to get the result from AC. 

B. Binonacci Numbers 

Three methods will be used to compute Fibonacci numbers. 
The first is using a loop, the second using a function, and the 
third using a recursive function. 

1) Using a Loop,  
 Figure 3 shows C++ code that computes Fibonacci number 

using a loop. The algorithm used in this C++ code will be used 
(translated) in the assembly language programs later so that 
comparisons can be made. 

//Data 
//Same as that in Figure 1. 
END 
//Code 
L1: GET      N  
          SUB  I //N-I 
          BEQZ    L3 //if (N-I)=0, done 
          GETI     PDAT //get an array element into AC 
          BGEZ    L2  //if positive, skip 
          PUT  TMP //else, negate  
          LIMM 0 
          SUB  TMP 
L2:     ADD     SUM //add to sum 
           PUT      SUM 
          GET  I //increase index I by one 
          AIMM 1 
          PUT I 
          GET PDAT //increase array address by one 
          AIMM  1 
          PUT  PDAT 
          GOTO  L1 //next element 
L3:    GET  SUM //print sum 
          PRNT 
          STOP  //terminate program  
END 

//Data  
I          1  0 //array index 
SUM  1  0 //sum 
N        1  9 //number of elements in the array 
TMP 1  0 //temporary location  
PDAT  1  DAT //pointer to the array DAT 
DAT    9  10 20 30 -40 50 60 70 80 -90  //array DAT 
END 
//Code 
L1:    PUSH     N  
          PUSH     I 
          SUB  //N-I 
          BEQ       L3 //if (N-I)=0, done 
          PUSHI  PDAT //get an array element  
          PUSHI  PDAT //get the array element again 
          BGEZ    L2  //if positive, skip 
          PUSH    0 //else, negate 
          SWAP 
          SUB 
L2:    PUSH    SUM //add to sum 
          ADD 
          POP  SUM 
          PUSH    I //increase index I by one 
          PUSH    1 
          ADD 
          POP  I 
          PUSH PDAT //increase array address by one 
          PUSH  1 
          ADD 
          POP  PDAT 
          GOTO  L1 //next element 
L3:    PUSH  SUM //print sum 
         PRNT 
         STOP  //stop 
END 

Figure 1: Stack-Based (Zero-Address) Code Using Array

Figure 2: Accumulator-Based Code Using Array 

Figure 3: C++ Code: Compute Fibonacci Number  

int main() {  //compute Fib(N) 
        int I, A, B, C, N  
        std::cin >> N;  //get input N, say 10. 
        if (N < 2) 
                C = N; 
        else { 
                A = 0; B = 1; 
                for (I = 2; I <= N; I++) { 
                        C = B + A; A = B; B = C; 
                } 
        }  

    std::cout << C; 
    return 0; 

}   
 



Figure 4 shows the stack-based code to compute Fibonacci 
number using a loop. In the data section, the same variables as 
those in C++ code are declared. The program reads the input 
and stores it in variable N. Then, it computes N-2 and checks if 
N ≥ 2. If no, it stores the result in C, which is N itself, and goes 
to print result. Otherwise, it computes the loop body (C = B+A; 
A = B; B = C;), increases loop index I, and checks if I ≤ N. If 
yes, it goes to next loop iteration. If no, it exists the loop and 
prints the result.  

Figure 5 Shows accumulator-based assembly language code 
to compute Fibonacci number. This program has the same data 
section as that in the stack-based program. It applies the same 
loop algorithm. Here, N-1 is computed to check if N < 2, instead 
of computing N-2. Another difference is that the stack-based 
program needs to push the data on stack for computation, while 
the accumulator-based program needs to load one of the input 
data into accumulator AC for computation. 

2) Using a Non-Recursive Function 

Now, consider writing a non-recursive function Fib to 
compute Fibonacci number. It takes an integer N as input and 
compute Fib(N) as output. Note that the input N should be 
pushed on stack just before calling the function and the result 

Fib(N) should be stored on stack so that right after the function 
returns, only the function result remains on the stack. Table 3 
shows the stack frame of the function Fib. It contains input 
N/output Fib(N), return address, and four local variables.  

Table 3: Stack Frame of Function Fib 

Address Content Explanation 

FP-1 N/Fib(N) Before call Fib(N)/after Fib(N) return 

FP RA Return Address 

FP+1 I Local variable 

FP+2 A Local variable 

FP+3 B Local variable 

FP+4 C Local variable 

 

Figure 6 shows stack-based code to compute Fibonacci 
number using a non-recursive function. The read instruction 
reads input and push it on top of stack. So, this program reads 
input and then calls the function Fib immediately. After the 
function returns, the print instruction prints the result on top of 
stack. 

Note that JNS instruction pushes return address on stack. 
The first instruction of the subroutine Fib copies SP into FP. 
So, FP points to the function return address and the input N is 
pointed by FP-1. The next four sluts on stack are used for the 
four local variables. Note that I, A, B, and C in the content 
column in Table 3 are used to compare with variable names of 
program in Figure 4. No local variable names can be defined, 
instead, FP+Imm is used to represent local variable location.  

Note that Fib(N)=N when N<2. So, there is no need to store 
result on stack when N < 2 as it is already there. Meanwhile, 

//Data 
I 1    1 //index 
N    1    0 //N 
C    1    0 //Fib(N) 
B    1    1 //Fib(N-1) 
A    1    0 //Fib(N-2) 
END 
//Code 

READ  //read input 
POP N //N=input 
PUSH N 
PUSH 2  
SUB  //N-2 
BGEZ L1 //if N>=2 go to loop body 
PUSH N 
POP C //C=N 
GOTO L2 //go to print result 

L1:    PUSH B //beginning of loop body 
PUSH A 
ADD 
POP C //C = B+A 
PUSH B  
POP A //A = B 
PUSH C  
POP B //B = C 
PUSH I  
PUSH 1 
ADD  
POP I //I = I+1 
PUSH I  
PUSH N 
SUB  //I-N 
BLTZ L1 //if I<N go to loop body 

L2:    PUSH C //print result 
PRNT 
STOP  //terminate program 

END 
//Input 
10  //N 

 

//Data 

//Same as that in Figure 4 
//Code 

READ  //read input 
PUT N //N=input 
PUT C //C=N 
SUB I //AC=N-1 
BLTZ L2 //if N<1 done 
BEQZ L2 //if N=1 done 

L1:   GET B //beginning of loop body 
ADD A //AC=B+A 
PUT C //C=B+A 
GET B //AC=B 
PUT A //A=B 
GET C //AC=C 
PUT B  //B=C 
GET I //AC=I 
AIMM 1 //AC=I+1 
PUT I //I=I+1 
SUB N //AC=I-N 
BLTZ L1 //if I<N go to loop body. 

L2:    GET C //print result 
PRNT 
STOP  //terminate program 
END 

//inputs 
10  //N 

 

Figure 4: Stack-Based Code Using a Loop 

Figure 5: Accumulator-Based Code Using a Loop 



right before Fib returns, the result should be stored on stack at 
FP-1 and SP should point to the return address. Instructions 
POP FP-1 and ISP -3 in Figure 6 are to achieve these. 

 

Figure 7 shows the main program of accumulator-based 
code to compute Fibonacci number using a non-recursive 
function. Figure 8 shows the function Fib. This program has the 
same stack frame of function Fib as shown in Table 3 except 
the frame pointer FP is replaced by the $ symbol. The main 
program reads input, pushes it on stack, and then calls the 
subroutine Fib. When the subroutine returns, it pops the result 
off stack and prints the result. The subroutine Fib code is very 
much like the code shown in Figure 5.  

Note that the subroutine Fib shown in Figure 8 does not use 
any push instructions. Therefore, the stack point SP does not 
change inside the subroutine and then there is no to use pop 
instructions to restore the stack. 

3) Using a Recursive Function 
Table 4 shows the stack frame of recursive function Fib. 

Before the function call, the input N should be pushed on stack. 
Then function call pushes the return address on stack. As shown 
in Figure 9, the subroutine will push the previous frame point 
FP on stack to save it as successive calls will change FP. The 
next two sluts in the stack frame at FP+1 and FP+2 are for 
successive calls. Before the function returns, the result is stored 
on stack frame at FP-2 and previous FP is restored. 

Table 4: Stack Frame of Recursive Function Fib (Stack) 

Address Content Explanation 

FP-2 N/Fib(N) Before call Fib(N)/after Fib(N) return 

FP-1 RA Return Address 

FP Prior FP Previous FP 

FP+1 (N-1)/Fib(N-1) Before call Fib(N-1)/after Fib(N-1) return 

FP+2 (N-2)/Fib(N-2) Before call Fib(N-2)/after Fib(N-2) return 

 

//No data 
END 
//Code 

READ 
JNS Fib //call Fib 
PRNT  //print result 
STOP  //terminate program 

Fib:   MOVE FP SP  
PUSH 1 //I=1 
PUSH 0 //A=0 
PUSH 1  //B=1 
PUSH 0 //C=0 
PUSH FP-1 //N 
PUSH 2 //2 
SUB  //N-2 
BGEZ L1 // if N>=2 go to loop body 
GOTO L2 //Fib(N)=N if N<2 

L1:    PUSH FP+3 //beginning of loop body 
PUSH FP+2 
ADD 
POP FP+4 //C=B+A 
PUSH FP+3 
POP FP+2 //A=B 
PUSH FP+4 
POP FP+3 //B=C 
PUSH FP+1 
PUSH 1 
ADD 
POP FP+1 //I=I+1 
PUSH FP+1 
PUSH FP-1 
SUB  //I-N 
BLTZ L1 //if I<N go to loop body 
POP FP-1 //Store result at FP-1 

L2:    ISP -3 //restore the stack 
JR 0 //return 

END 
//Inputs 
10   //N=10 

//Data 
N 1 0 //N: input 
C 1 0 //C: result of fib(N) 
END 
//Code 
//main program 

READ  //read input 
PUT N //N=input 
PUSH N //push N on stack 
JNS Fib //call Fib 
TOP C //get and save fib(N) 
POP  //restore stack 
GET C //get Fib(N) from C 
PRNT  //print Fib(N) 
STOP  //terminate program 

 

Fib: LIMM 1 
PUT $+1 //I=1 
PUT $+3 //B=1 
AIMM -1 
PUT $+2 //A=0 
GET $-1 //AC=N 
SUB $+1 //AC=N-1 
BLTZ L3 //if N<1 done 
BEQZ L3 //if N=1 done 

L2:    GET $+3 //beginning of loop body 
ADD $+2 //AC=B+A 
PUT $+4 //C=B+A 
GET $+3 //AC=B 
PUT $+2 //A=B 
GET $+4 //AC=C 
PUT $+3 //B=C 
GET $+1 //AC=I 
AIMM 1 //AC=I+1 
PUT $+1 //I=I+1 
SUB $-1 //AC=I-N 
BLTZ L2 //if I<N go to loop body 
GET $+4 //AC=C 
PUT $-1 //store result on stack 

L3:    JR 
END 
10 

Figure 6: Stack-Based Code Using Non-Recursive 
Function 

Figure 7: Accumulator-Stack-Based Code Using Non-
Recursive Function (1) 

Figure 8: Accumulator-Stack-Based Code Using Non-
Recursive Function (2) 



Table 5 shows the stack frame of recursive function Fib for 
accumulator-based machine. Before the function call, the input 
N should be pushed on stack. Then the function call from main 
program pushes the return address on stack. The next two sluts 
in the stack frame are for successive calls Fib(N-1) and Fib(N-
2), respectively. The first column of address in Table 5 shows 
the use of stack frame for function Fib(N).    

Note that in order to call Fib(N-1) within Fib(N), the stack 
pointer should point to N-1. This requires that SP increase by 1 
before calling Fib(N-1). So, the value of $ is also increased by 
1 as shown in the second column of address. Similarly, right 
before calling Fib(N-2), SP and therefore $ are increased by 1 
again as shown in the third column of address. Finally, the last 
column in Table 5 is similar to the last column in Table 4.  

Table 5: Stack Frame of Recursive Function Fib (Accumulator) 

Address Content Explanation 

Fib(N) Fib(N-1) Fib(N-2) 

$-1 $-2 $-3 N/Fib(N) before/after 

$ $-1 $-2 RA Return Address 

$+1 $ $-1 (N-1)/Fib(N-1) before/after 

$+2 $+1 $ (N-2)/Fib(N-2) before/after 

 

IV. CONCLUSIONS 

In this paper, several computer architecture simulators are 
presented. Several example assembly language programs are 
also given. These examples illustrate many basic programming 
concepts and techniques at the assembly language level. These 
include dealing with array, loop, stack, function call and return, 
parameter passing, local variables, and recursion. Because these 
simulated machines contain very simple similar instruction set 
and have the same assembly language program structure, it is 
convenient to compare assembly language programming details 
among different computer instruction formats. For example, to 

support the use of array, the processor without general purpose 
registers should provide indirect memory access instructions 
such as PUSHI and GETI. Owing to the space, two-address and 
three-address (memory-to-memory and register-to-register) 
machine simulators are not presented here. In register-to-
register machine, stack frame may not be needed for a non-
recursive subroutine. In a three-address machine, an assembly 
language program uses a smaller number of instructions than 
zero- or one-address machines. 

Students can use these simulators for assembly language 
programming assignments. They can also modify these 
simulators to add more instructions and debugging tools. In 
addition, these simulated machines can serve as the compiler’s 
target machines for the code generation practice.   
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//compute Fib(N) 
Fib:  PUSH  FP 
 MOVE  FP SP //FP=SP 
 PUSH  FP-2 //N 
 PUSH  2 //2 
 SUB  //N-2 
 BGEZ  L1 //N>=2  
 GOTO  L2 //Fib(N)=N if N<2 
L1: PUSH  FP-2  //N 
 PUSH  1 //1 
 SUB  //N-1 
 JNS  Fib //call Fib(N-1) 
 PUSH  FP-2 //N 
 PUSH  2 //2 
 SUB  //N-2 
 JNS  Fib //call Fib(N-2) 
 ADD  //Fib(N-1)+Fib(N-2) 
 POP  FP-2 //store result at FP-2 
L2: POP  FP //restore previous FP 
 JR 0 
 END 
//Inputs 
10   //N=10 

Figure 9: Stack-Based Recursive Function Fib 

//compute Fib(N)  
Fib:  GET  $-1  //AC=N 
 BNEZ  L1 //Fib(N)=0 if N=0 
 GOTO  L3 //done 
L1: AIMM  -1  //AC=N-1  
 BNEZ  L2 //Fib(N)=1 if N=1 
 GOTO  L3  //done  
L2: PUT  $+1 //store N-1 to $+1 
 GET  SP //AC=SP 
 AIMM  1 //AC=SP+1  
 PUT  SP //increase SP ($) by 1 
 JNS  Fib //call Fib(N-1) 
 GET  $-2 //AC=N 
 AIMM  -2 //AC=N-2 
 PUT  $+1 //store N-2 to $+1 
 GET SP //AC=SP 
 AIMM  1 //AC=SP+1 
 PUT  SP //increase SP ($) by 1 
 JNS  Fib //Call Fib(N-2) 
 GET  SP //AC=SP 
 AIMM  -2 //AC=SP-2 
 PUT  SP //restore SP 
 GET  $+1 //AC=Fib(N-1) 
 ADD  $+2 //AC=Fib(N-1)+Fib(N-2) 
 PUT  $-1 //store Fib(N) to $-1 
L3: JR 
END 
10   //Input 10 

Figure 10: Accumulator-Based Recursive Function Fib 


