
MarieSimR: The MARIE
Computer Simulator Revision

Xuejun Liang

Department of Computer Science

California State University - Stanislaus

Fall 2021

Introduction

• MarieSim is the MARIE computer simulator

• MARIE is an accumulator-based computer model used in the
popular textbook “The essentials of computer organization
and architecture”.

• Used for assembly language programming exercises.

• But, MarieSim is too simple and thus unable to support
some important concepts in computer architecture:

• No immediate addressing mode

• No stack and thus its subroutine has no local variables and
can not be recursive.

• Can not define a variable to hold the address of another
variable symbolically.

• In order to solve these problems, a revision to MarieSim,
called MarieSimR, is developed.

Outline

• Design and Implementation of MarieSimR

• Assembly Language Program Examples
• to illustrate how to use MarieSimR

• to compare MarieSim and MarieSimR

The Goal of This Revision

• The goal of this work is to revise MARIE to support the stack
and recursive subroutines without changing its architectural
characteristics and its microarchitecture for control unit

• The MARIE architecture has the following characteristics:

• Binary, two's complement data representation.

• Stored program, fixed word length data and instructions.

• 4K words of word-addressable main memory.

• 16-bit data words.

• 16-bit instructions, 4 for the opcode and 12 for the address.

• A 16-bit arithmetic logic unit (ALU).

• Seven registers for control and data movement.

MarieSimR: What’s New?
• The stack pointer stored in a reserved memory location

and the stack-relative addressing mode are added.

• The subroutine call and return instructions are revised to
use the stack for the subroutine return address.

• A stack frame can be created for a subroutine to hold the
return address, input arguments, output results, local
variables and so on. So, recursive subroutines are supported.

• A new instruction for increasing or decreasing the value of
the stack pointer is added to facilitate the push and pop
operations.

• A new instruction for loading an immediate constant into
the accumulator is added to replace the clear instruction.

• A new assembler directive is added to support for defining
a label to hold the address of another label symbolically

Opcode Instruction Meaning
0000 JnS X Mem[X]  PC & PC  X+1

Call X Push PC & PC  X

0001 Load X AC Mem[X]

0010 Store X Mem[X]  AC

0011 Add X AC  AC + Mem[X]

0100 Subt X AC  AC – Mem[X]

0101 Input AC  value from keyboard

0110 Output Display value in AC on screen

0111 Halt Terminate program

1000 Skipcond 000 Skip next instruction if AC < 0

Skipcond 400 Skip next instruction if AC = 0

Skipcond 800 Skip next instruction if AC > 0

1001 Jump X PC  X

1010 Clear AC  0

Limm Imm AC  Imm

1011 AddI X AC  AC + Mem[Mem[X]]

1100 JumpI X PC Mem[X]

JR POP PC

1101 LoadI X AC Mem[Mem[X]]

1110 StoreI X Mem[Mem[X]]  AC

1111 IncSP Imm Mem[SP] += Imm

MARIE Instruction Set and Revision

• X is either a hexadecimal
literal or a label (symbol)
and is used as a memory
address

• Mem[X] represents the
content at the memory
location X.

• Imm is a 12-bit decimal
constant integer.

• When using stack-relative
addressing, X has the
format: $±offset

• $ represents the value
of the stack pointer

• Offset is a 10-bit
decimal constant
integer.

MARIE Memory Map with Stack
0

3070

3071SP MEM[SP]

3072

4095

Stack
Region

(1k)

Program
and data
Region
(3K-1)

• The MARIE architecture
has 4K words of word-
addressable main
memory.

• The stack grows towards
the high memory
address end and starts
from 3072.

• The stack occupies 1K
out of 4K MARIE word-
addressable memory
space.

• The stack pointer is
located at memory
location 3071

Instruction Encoding Format

MARIE

MARIE
Revision

If Bit 11 is 1 and Bit 10 is 1, then the stack-relative addressing is used and
the offset address is stored inside the instruction from Bit 0 to Bit 9.

Instructions Limm Imm and IncSP Imm store the 12-bit integer in 2’s
complement inside the instruction from Bit 0 to Bit 11.

Opcode

Bit
15

Bit
12

Bit
11

Bit
0

Address / Immediate

Bit
10

Bit
9

Push and Pop Operations

Push X Meaning

IncSP 1
Load X
StoreI SP

Mem[SP] Mem[SP] + 1
AC Mem[X]
Mem[Mem[SP]]  AC

Pop X Meaning

loadI SP
Store X
IncSP -1

AC Mem[Mem[SP]]
Mem[X]  AC
Mem[SP] Mem[SP] - 1

IncSP Imm

Limm Imm
Add SP
Store SP

The instruction IncSP Imm is not necessary as
It can be replaced by three other instructions

MARIE Directives and Extension

• Directives are instructions to assemblers.

• MarieSim has five directives
• ORG defines the starting address of the program.

• DEC, OCT, and HEX define named constant in decimal,
octa-decimal, and hexadecimal, respectively.

• END indicates the end of the program.

• MarieSimR adds one more directive LAB
• It defines a named hexadecimal constant specified

either by a hexadecimal literal or a label symbolically.

Two Programming Examples

• Example 1: Compute sum of numbers in an array.
• Loop through an array
• Compare MarieSim and MarieSimR

• Example 2: Compute Fibonacci number Fib(N)
• Using Loop
• Using Subroutine with global variables
• Using Subroutine with local variables
• Using Recursive subroutine Need to use

Stack frame

Example 1: Using loop to add five numbers in array, save result to Sum

Example 2: Compute Fibonacci Number
fib(N), Where N is an Input

fib 𝑁 = ቊ
𝑁 𝑖𝑓 𝑁 < 2

ሻfib 𝑁 − 1 + fib(𝑁 − 2 𝑖𝑓 𝑁 ≥ 2

int I, A, B, C, N

cin >> N;
if (N < 2)
C = N;

else {
A = 0; B = 1;
for (I = 2; I <= N; I++) {

C = B + A; A = B; B = C;
}

}
cout << C;

Mathematics formula

C++ code using a loop

C = fib(N)
B = fib(N-1)
A = fib(N-2)

Example 2: C++ Code with Using Function

int N, C;

int fib(int N) {
int I, A, B, C;
if (N < 2)
C = N;

else {
A = 0; B = 1;
for (I = 2; I <= N; I++) {

C = B + A; A = B; B = C;
}

}
return C;

}

cin >> N;
C = fib(N);
cout << C;

int N, C;

int fib(int N) {
if (N < 2)
return N;

else
return fib(N-1)+fib(N-2);

}

cin >> N;
C = fib(N);
cout << C;

Non-recursive function

Recursive function

Stack frame of Fib(N)

Location in Stack Memory Address Used for
$-1 Mem[SP]-1 Input N / Output Fib(N)
$ Mem[SP] Return Address
$+1 Mem[SP]+1 Local Variable I
$+2 Mem[SP]+2 Local Variable A
$+3 Mem[SP]+3 Local Variable B
S+4 Mem[SP]+4 Local Variable C

Initialize the

local variables

Compute Fib(N)

Copy the result to

memory location $-1

The values in stack at several important timestamps

Stack Frame of Fib(N)

Location in Stack Memory Address Used for
$-1 Mem[SP]-1 Input N / Output Fib(N)
$ Mem[SP] Return Address
$+1 Mem[SP]+1 Input N-1 / Output Fib(N-1)
$+2 Mem[SP]+2 Input N-2 / Output Fib(N-2)

Right after calling Fib(N) and right before returning from Fib(N)

The values in stack at several important timestamps (1)

The values in stack at several important timestamps (2)

The values in stack at several important timestamps (3)

