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Abstract – MarieSim is the MARIE computer simulator [1] and 

MARIE is an accumulator-based computer architecture model used 

in the textbook [2]. MarieSimR, a revision of MarieSim, is developed 

to support the use of stack and recursive subroutine. Users can learn 

and practice more assembly language programming skills with using 

MarieSimR. In this revision, the stack pointer stored in a reserved 

memory location and the stack-relative addressing mode are added. 

The subroutine call and return instructions are revised to use the 

stack for the subroutine return address. A stack frame can be created 

for a subroutine to hold the return address, input arguments, output 

results, local variables and so on. A new instruction for increasing 

or decreasing the value of the stack pointer is added to facilitate the 

push and pop operations. In addition, a new instruction for loading 

an immediate constant into the accumulator is added to replace the 

clear instruction. Finally, a new assembler directive is also added to 

support for defining a label to hold the address of another label 

symbolically. In this paper, the design and implementation of this 

revision are presented. Two programming applications are also 

discussed to illustrate how to utilize these new instructions. 

Keywords - Computer Organization and Architecture, Simulator, 

Accumulator Machine, Assembly Language Programming 

I. INTRODUCTION 

Assembly language programming and writing, using and 
modifying processor simulators are major hands-on assignment 
categories in an undergraduate computer architecture course [3]. 
There are many computer architectures with different instruction 
formats such as stack-based, accumulator-based, register-based, 
two-address, or three-address machine. Linda Null and Julia 
Lobur designed an accumulator-based computer architecture 
model called MARIE (the Machine Architecture that is Really 
Intuitive and Easy) and its simulator called MarieSim [1] which 
is used in their popular textbook [2] to teach beginning computer 
organization and architecture. Users can assemble, execute, and 
debug their assembly language program and track the values of 
internal CPU registers and the memory contents in MarieSim 
environment during the execution of each instruction. But, 
MarieSim is too simple and thus unable to support some 
important concepts in computer architecture such as the 
immediate addressing mode, the stack, and thus recursive 
subroutines. Meanwhile, MarieSim assembler does not support 
for defining a label (pointer) to hold the address of another label 
symbolically. Programmers have to compute (count) the address 
of a label manually and then hardcode it into their code. 

In order to solve these problems, MarieSimR, a revision of 
MarieSim, is developed. In MarieSimR, an assembler directive 
Lab is added for defining a label to hold the address of another 
label symbolically. An instruction Limm is added for loading an 
immediate constant into the accumulator AC. This instruction is 
an extension of MARIE instruction Clear which loads zero into 
AC. More importantly, a stack pointer that is stored in a reserved 
memory location SP and the stack-relative addressing mode are 
added. Meanwhile, a new subroutine call instruction Call and a 
new subroutine return instruction JR are added to use the stack 
for saving and getting the return address, respectively. They will 
replace the MARIE subroutine call and return instructions JNS 
and JUMPI, respectively, which use the memory slot just before 
the first instruction of the subroutine for the return address. In 
addition, a new instruction IncSP for increasing or decreasing 
the value of the stack pointer is added to facilitate the stack 
operations. With this new revision, a stack frame can be built for 
a subroutine to hold the return address, input arguments, output 
results, local variables, etc. and thus recursive subroutines can 
be supported. 

In the rest of the paper, the MARIE instruction set and its 
revision are described in Section II. Two example applications 
are discussed to illustrate how to utilize the new revision and to 
compare MarieSim and MarieSimR in Section III. The first 
application is to compute the sum of an array of numbers and the 
second is to compute the Fibonacci numbers in which different 
programming techniques are used so that students can have a 
better understanding of global variables, local variables, stack, 
subroutine, and recursion. Finally, a conclusion is given in 
Section IV.  

II. MARIE INSTRUCTION SET AND ITS REVISION 

The MARIE architecture is an accumulator-based computer 
architecture model and has the following characteristics: (1) 2's 
complement data representation, (2) fixed word length data and 
instructions, (3) 4K words of word-addressable main memory, 
(4) 16-bit data words, (5) 16-bit instructions, 4 for the opcode 
and 12 for the address, (6) A 16-bit arithmetic logic unit (ALU), 
and (7) Seven registers for control and data movement. The goal 
of this work is to revise MARIE to support stack and recursive 
subroutines without changing its above characteristics and its 
microarchitecture for control unit. Note that the seven registers 
are not accessible to assembly language programmers.  
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In order to support stack, a user-accessible stack pointer (the 
address of top of stack) must be added into MARIE. Instead of 
using a dedicated register, a reserved memory location is used 
to store the stack pointer. As shown in Figure 1, stack pointer is 
stored at the reserved memory location SP which is 3071. Here, 
Mem[SP] means the memory content at the location SP. User 
programs and data occupy the low address region from 0 to 3070 
and stack occupies the high address region from 3072 to 4095. 
Note that the stack uses 1K out of 4K MARIE memory space 
and grows towards the higher address end.    

 

 

 

 

 

 

 

Figure 1: MARIE Memory Map After Extension 

There are two reasons for using a reserved memory location 
rather than a dedicated register to store the stack pointer. First, 
there is no space to add one more register in the MARIE datapath 
without changing its microarchitecture for control unit. Second, 
if a dedicated stack pointer register is used, the user interface of 
MARIE simulator has to be changed to display the value of the 
stack pointer register. On the other hand, if a reserved memory 
location is used, users can observe the value of the stack pointer 
from the memory monitor panel in the current MARIE simulator 
user interface without any changes.  

The MARIE instructions and the revised/new instructions 
(in red color) are shown in Table 1. MARIE has 15 instructions 
currently. The MARIE subroutine call and return instructions 
JnS and JumpI are replaced by Call and JR, respectively. The 
new subroutine call instruction Call pushes the return address on 
top of stack, while the new subroutine return instruction JR gets 
the return on top of stack. The MARIE instruction Clear which 
resets AC to zero is replaced by the new instruction Limm which 
loads an immediate number into AC. Finally, a new instruction 
IncSP is added to increase or decrease the value of stack pointer 
by a constant amount. 

Note that in Table 1, X can be either a hexadecimal literal or 
a label (symbol) and is used as a memory address in MarieSim. 
Mem[X] represents the content at the memory location X. PC is 
the program counter which holds the address of the instruction 
to be executed next. Imm is a decimal constant integer. Note that 
the range of X is from 0 to 4095, while the range of Imm is from 
-2048 to 2047. They both occupy 12 bits inside an instruction 
and an opcode takes 4 bits inside an instruction. The total length 
of an instruction is 16 bits. 

In MarieSimR, when using direct or indirect addressing, X 
is the same as that in MarieSim. But when using stack-relative 
addressing, X has the format: $ ± Offset, where $ represents the 
value of stack pointer which is stored in the reserved memory 
location SP and Offset is a 10-bit decimal constant integer. The 

2 bits right before Offset inside an instruction are set to be 11. 
This indicates that stack-relative addressing is used. The address 
represented by $ ± Offset is equal to Mem[SP] ± Offset. Please 
note that both the value of the stack pointer and the contents in 
stack can be observed from the memory monitor panel in the 
MarieSim user interface. 

Table 1: MARIE Instruction Set and Its Revision 

Opcode Instruction Meaning 

0000 JnS X Mem[X]  PC & PC  X+1 

Call X Push PC & PC  X 

0001 Load X AC  Mem[X]  

0010 Store X Mem[X]  AC 

0011 Add X AC  AC + Mem[X] 

0100 Subt X AC  AC – Mem[X] 

0101 Input AC  value from keyboard 

0110 Output Display value in AC on screen 

0111 Halt Terminate program 

1000 Skipcond 000 Skip next instruction if AC < 0 

Skipcond 400 Skip next instruction if AC = 0 

Skipcond 800 Skip next instruction if AC > 0 

1001 Jump X PC  X 

1010 Clear  AC  0 

Limm Imm AC  Imm 

1011 AddI X AC  AC + Mem[Mem[X]] 

1100 JumpI X PC  Mem[X] 

JR POP PC 

1101 LoadI X AC  Mem[Mem[X]] 

1110 StoreI X Mem[Mem[X]]  AC 

1111 IncSP Imm Mem[SP] += Imm 

 
Two important operations on stack are push and pop. Push 

X operation will push memory content at memory address X, i.e. 
Mem[X], on top of stack and Pop X operation will store the 
content on top of stack in memory location X and remove it from 
stack. These two operations can both be implemented by three 
assembly instructions as shown in Table 2. Push X will increase 
the value of stack pointer (Mem[SP]) by one first and then stores 
Mem[X] on top of stack. On the other hand, Pop X will store the 
content on top of stack in memory location X first and then 
decreases the value of stack pointer by one.  

Table 2: Push and Pop Operations 

Push  X Pop  X 

IncSP  1 

Load   X 

StoreI SP  

loadI   SP 

Store   X 

IncSP  -1 

 
Note that the Push X and Pop X operations will be used in 

the assembly language programs in this paper for the sake of 
saving space. In order to assemble and to run the programs, you 
must expand Push X and Pop X, i.e., replace them with their 
corresponding sequences of instructions as shown in Table 2, 
respectively.  

0 

Program and data 

Region (3K-1) 

Stack Region (1K) 

Mem[SP] SP 3071 

3072 

3070 

4095 



A. MARIE Directives and One New Directive  

Directives are instructions to assemblers. MarieSim has five 
directives. Directive ORG defines the starting address of the 
program. Directives DEC, OCT, and HEX define named 
constant (or variable) in decimal, octadecimal, and hexadecimal, 
respectively. Directive END indicates the end of the program. 
MarieSimR adds one more directive LAB which defines a 
named hexadecimal constant (or variable) specified either by a 
hexadecimal literal or a label symbolically. 

III. ASSEMBLY LANGUAGE PROGRAM EXAMPLES USING 

MARIESIM AND MARIESIMR 

In the following subsections, two simple examples are used 
to illustrate how to write assembly language programs to deal 
with array, loop, function, and recursion by using MarieSimR. 
Meanwhile, comparisons between MarieSim and MarieSimR 
are also discussed. The first example is to compute sum of all 
values in an array. The second example is to compute Fibonacci 
number. Note that very similar examples were used to show how 
to write assembly language programs for different instruction 
formats in [4, 5]. 

A. Sum of an Array of Numbers 

This example is to compute sum of an array of numbers. As 
shown in Figure 2, The code in the middle is for MarieSim but 
it works fine in MarieSimR as well, the code on the right is for 
MarieSimR only, and the left is the memory address of each 
corresponding instruction or data on its right.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2: Compute Sum of Numbers in An Array 

It can be seen that both codes use indirect addressing to 
access each number in the array stored in the memory starting 

from the memory location Dat. Using MarieSim, users must 
calculate the memory address of Dat manually and then use this 
constant address where is needed. Note that the memory address 
of Dat is hexadecimal 0x117 because the code starts from 0x100 
and each instruction occupies one memory location and each 
data occupies one memory location as well. On the other hand, 
using MarieSimR, user can use the label Dat where is needed by 
using the new assembler directive Lab. Then, the assembler will 
compute the memory address of Dat. The code related with this 
comparison is highlighted in red color in Figure 2.   

Another comparison is about how to deal with immediate 
constant operand. The related code in this compassion is 
highlighted in the blue color in Figure 2. The new instruction 
Limm in MarieSimR allows to load a constant number into the 
accumulator AC, while in MarieSim, a constant number must be 
stored in memory before it can be loaded into AC. Therefore, the 
code for MarieSim must define a named constant One to hold 
the constant number 1 in order to add 1 or subtract 1. But the 
code for MarieSimR does not need to define such a named 
constant. 

B. Compute Binonacci Numbers 

The Fibonacci number can be computed by the formula  

𝐹𝑖𝑏(𝑁) = {
𝑁                                               𝑖𝑓 𝑁 < 2

𝐹𝑖𝑏(𝑁 − 1) + 𝐹𝑖𝑏(𝑁 − 2)  𝑖𝑓 𝑁 ≥ 2
 

Four methods will be used to compute it. The first is using a 
main program with a loop, the second using a non-recursive 
function with global variables, the third using a non-recursive 
function with local variables, and the fourth using a recursive 
function. Note that the first two methods can be applied in both 
MarieSim and MarieSimR. But the last two methods can only 
be applied in MarieSimR. 

1) Using a Loop  

Figure 3 shows a C++ code that computes the Fibonacci 
number using the main program with a loop, where the number 
N is a user input. The control constructs used in this C++ code 
will be used (translated) in the assembly language programs 
later so that comparisons can be made. Note that variable A is 
used for storing Fib(N-2), B for storing Fib(N-1), C for storing 
Fib(N), and I is the loop control variable. 

 

 

 

 

 

 

 

 

 

 

Figure 3: C++ Code: Compute Fibonacci Number 

/ Code for MarieSimR 

           ORG     100 
           Load     Addr 

           Store     Next 

           Limm    -1 
           Add       Num  

           Store     Ctr 

Loop,  Load     Sum 
           AddI     Next 

           Store     Sum 

           Limm    1 
           Add       Next 

           Store      Next 

           Limm     -1 
           Add       Ctr 

           Store     Ctr 

           Skipcond 000 
           Jump     Loop 

           Halt 

Addr,  Lab      Dat 
Next,  Hex      0 

Num,  Dec      5 

Sum,   Dec      0 
Ctr,     Hex      0 

Dat,    Dec      -10 
           Dec      15 

           Dec      -20 

           Dec      25 
           Dec      30 

 

/ Code for MarieSim 
            ORG   100  

            Load    Addr 

            Store    Next 
            Load    Num 

            Subt     One 

Store   Ctr 
Loop,  Load    Sum 

           AddI     Next 

           Store    Sum  
           Load     Next 

           Add      One  
           Store   Next 

           Load     Ctr   

           Subt     One  
           Store    Ctr  

           Skipcond 000 

           Jump     Loop  
           Halt    

Addr,  Hex     117  

Next,  Hex      0 

Num,  Dec      5 

Sum,   Dec      0 

Ctr,     Hex      0 
One,   Dec       1 

Dat,    Dec      -10 

           Dec      15 
           Dec      -20 

           Dec      25 

           Dec      30 

/ Address 
              

0x100 

0x101 
0x102 

0x103 

0x104 
0x105 

0x106 

0x107 
0x108 

0x109 
0x10A 

0x10B 

0x10C 
0x10D 

0x10E 

0x10F 
0x110 

0x111 

0x112 

0x113 

0x114 

0x115 
0x116 

0x117 

0x118 
0x119 

0x11A 

0x11B 

int main() {  //compute Fib(N) 

        int I, A, B, C, N  

        std::cin >> N;  //get input N 

        if (N < 2) 

                C = N; 

        else { 

                A = 0; B = 1; 

                for (I = 2; I <= N; I++) { 

                        C = B + A; A = B; B = C; 

                } 

        }  

    std::cout << C; //display result 

    return 0; 

}   

 



Figure 4 shows the MarieSim code that computes Fibonacci 
numbers using a loop. It works fine in MarieSimR as well. But 
the label One is not necessary when using MarieSimR. It can 
be removed and hence instructions Load I and Add One should 
be replaced by Limm 1 and Add I. The variables I, N, C, B, and 
A have the same roles as those in C++ code. The program reads 
the input and stores it in both variables N and C. Then, it 
computes N-1. If N ≥ 2, it goes to Loop. Otherwise, it goes to 
Done. From the label Loop, it computes C=B+A, A=B, and B=C, 
increases I by 1, computes I-N, if I=N, it goes to Loop again, 
otherwise, it goes to Done. From the label Done, it loads and 
prints the result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Compute Fibonacci Number Using a Loop 

2) Using a Non-Recursive Function 

Using Global Variables: Figure 5 shows the MarieSim 

code on the left and the MarieSimR code on the right. They both 

compute the Fibonacci numbers using a non-recursive function 

Fib. The global variables like in Figure 4 are defined and used 

in both the main routine and the subroutine Fib. The main 

routine gets the user input and stores it in N. Then it calls the 

subroutine Fib which gets its input from N and saves its result 

in C. After Fib returns, the main routine loads the result from C 

and prints the result. Because the global variables are used, the 

MarieSim code of the subroutine Fib shown in Figure 5 is very 

similar with the code shown in Figure 4.  

Note that in MarieSim, the subroutine call instruction JnS 

Fib stores the return address at the memory location Fib and 

thus the first instruction of Fib is at the memory location Fib+1. 

So, the subroutine return instruction JumpI Fib gets the return 

address at the memory location Fib as well. On the other hand, 

in MarieSimR, the subroutine call instruction Call Fib stores 

the return address on top of stack and the subroutine return 

instruction JR also gets the return address from top of stack. So, 

the first instruction of Fib is just at the memory location Fib. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Using Subroutine and Global Variables 

Using Local Variables: Local variables are used inside a 
function only. When a function is called, its local variables are 
created and when the function is returned, its local variables are 
no longer available. In a general-purpose register architecture, 
the CPU registers are often the first choice for local variables. 
When there are not enough registers, local variables will be 
allocated their memory spaces from stack. In the accumulator-
based architecture, there is no any general-purpose registers. 
So, the stack is the only choice for local variables. In fact, a 
stack frame can be created for each function to hold the return 
address, input arguments, local variables, output results, and so 
on. In general, the stack frame of a function will be created, 
maintained, and destroyed by both the calling routine and the 
called subroutine. Note that MarieSim does not support stack. 
So, the following discussion is for MarieSimR only.      

Table 3 shows a stack frame of non-recursive function Fib. 
The stack frame contains six memory words in stack. The input 
N and the output result share one memory space in stack at $-1 
or Mem[SP] -1. The return address is stored in the next location 
and it is followed by the local variables I, A, B, and C. 

// Code for MarieSim and MarieSimR 

ORG        100 
Input  // Read input 

Store        N // N=input 

Store        C // C=N 

Subt          I // AC = N-1 

SKIPCOND 800 // If N-1 > 0, goto Loop 

JUMP      Done // Otherwise, goto Done 
Loop, Load        B // AC=B 

Add         A // AC=B+A 

Store        C // C=B+A 
Load        B // AC=B 

Store        A // A=B 

Load        C // AC=C 
Store        B // B=C 

Load         I // AC=1 

Add         One // AC=I+1 
Store         I // I=I+1 

SUBT       N // AC=I-N 

SKIPCOND 400 // If I=N, goto Done 
Jump        Loop // Otherwise, goto Loop 

Done, Load        C // Load result 

Output  // Print result 

Halt  // Terminate program 

// Variable Declarations  

I, DEC        1 // Loop control variable 
N, DEC        0 // N 

C, DEC        0 // Fib(N)  

B, DEC        1 // Fib(N-1) 
A, DEC        0 // Fib(N-2) 

One, DEC        1 // Constant 1 

// Code for MarieSim  

ORG       100 
Input 

Store       N 

JnS         Fib  
Load       C 

Output 

Halt  
// Subroutine Fib 

Fib,  HEX       0  

Load       N 
Store       C 

Subt        I 

SKIPCOND 800 
JUMP     Done 

Loop, Load       B 

Add        A 
Store       C 

Load       B 

Store       A 
Load       C 

Store       B 

Load        I 
Add         One 

Store        I 

SUBT      N 
SKIPCOND 400 

Jump        Loop 

Done, JumpI       Fib 
// Global Variable Declarations  

I, DEC        1 

N, DEC        0 
C, DEC        0 

B, DEC        1 

A, DEC        0 
One, DEC        1 

// Code for MarieSimR  

ORG       100 

Input 
Store       N 

Call        Fib  

Load       C 
Output 

Halt  

// Subroutine Fib 
 

Fib,  Load       N 

Store       C 

Subt        I 

SKIPCOND 800 

JUMP     Done 
Loop, Load       B 

Add        A 

Store       C 
Load       B 

Store       A 

Load       C 
Store       B 

Limm      1 

Add         I 
Store        I 

SUBT      N 

SKIPCOND 400 
Jump        Loop 

Done, JR 

// Global Variable Declarations  
I, DEC        1 

N, DEC        0 

C, DEC        0 
B, DEC        1 

A, DEC        0 

 



Table 3: Stack Frame of Non-Recursive Function Fib 

Location in Stack Memory Address Used for 

$-1 Mem[SP]-1 Input N / Output Fib(N) 

$ Mem[SP] Return Address 

$+1 Mem[SP]+1 Local Variable I 

$+2 Mem[SP]+2 Local Variable A 

$+3 Mem[SP]+3 Local Variable B 

S+4 Mem[SP]+4 Local Variable C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Using Subroutine and Local Variables  

* Push N and Pop C should be expanded according to Table 2 before 
assembling and running  

Figure 6 shows the code that computes Fibonacci numbers 
using a non-recursive function with local variables. As shown 
Figure 6, the main routine gets the user input and stores it in N. 
Then it pushes the input N on top of stack right before it calls 
the subroutine Fib. Note that when a subroutine is called, its 
return address is pushed on top of stack by the subroutine call 
instruction Call. Because the push operation increases $ (or 
Mem[SP]) by 1 (see Table 2), right after entering the subroutine 
Fib, the return address is at $ (or Mem[PS]) and the input N is 

at $-1 (or Mem[SP]-1). Then, the subroutine Fib uses four 
memory locations $+1, $+2, $+3, and $+4 in the stack area for 
its local variables I, A, B, and C, respectively. Now, the stack 
frame for the subroutine Fib as shown in Table 3 is created.  

The code of subroutine Fib in Figure 6 has three parts: (1) 
Initialize the local variables I, A, and B (highlighted in red 
color), (2) Compute Fib(N) (highlighted in blue color), and (3) 
Copy the result to memory location $-1, which overwrites the 
input N, right before the return (highlighted in crison color). 

Note that the subroutine return instruction JR copies the 
return address from top of stack into PC and then decreases  the 
stack pointer $ (or Mem[SP]) by 1. Therefore, right after the 
subroutine Fib returns, the return result is on top of stack (at $). 
So, the main routine can pop the result from top of stack. Please 
note that the stack frame of Fib is now completely destroyed. 
This is, the stack pointer now has the value as that right before 
the input N is pushed on stack. Finally, the main routine loads 
and prints the result.  

3) Using a Recursive Function 

Now, the subroutine Fib will be implemented as a recursive 
function. Like for the non-recursive function, we need to design 
a stack frame for the recursive function. First, we are going to 
need one memory slot of stack to store both input N and output 
Fib(N). Before calling the function Fib, the input N must be on 
top of stack (at $). But, right after calling Fib, stack grows and 
the return address is now on top of stack (at $). So, N now is at 
$-1. When N < 2, Fib(N) = N. This means that the output is the 
input and it is already in the right location in stack as desired. 
When N>2, Fib(N) = Fib(N-1) + Fib(N-2). This means that we 
need to call Fib twice to compute Fib(N-1) and Fib(N-2) inside 
the Fib(N). Therefore, we need two more local memory spaces 
inside the stack frame of Fib(N) to store (N-1)/Fib(N-1) and (N-
2)/Fib(N-2). So, the stack frame for Fib(N) needs four memory 
spaces in stack region as shown in Table 4. 

Table 4: Stack Frame of Recursive Function Fib(N) right after 

calling Fib(N) and right before returning from Fib(N) 

Location in Stack Memory Address Used for 

$-1 Mem[SP]-1 Input N / Output Fib(N) 

$ Mem[SP] Return Address 

$+1 Mem[SP]+1 Input N-1 / Output Fib(N-1) 

$+2 Mem[SP]+2 Input N-2 / Output Fib(N-2) 

 
Figure 7 shows the code that computes Fibonacci numbers 

using a recursive function. As shown in Figure 7, the main code 
and the global variable declarations are exactly the same as 
those in Figure 6. 

One important fact is that right before calling Fib(N-1) 
inside subroutine Fib(N), N-1 must be pushed on stack. This 
will increase the value of $ by 1. This means that right before 
calling Fib(N-1), the memory addresses of the stack frame for 
Fib(N) are shifting in terms of $ as shown in Table 5. The code 
to push N-1 on stack are highlighted in blue code as shown in 
Figure 7. Please note that we need to make sure that right after 
Fib(N-1) returns, its output Fib(N-1) overwrites its input N-1 
and remains on top of stack, i.e., at $, as shown in Table 5. 

//Main code for MarieSimR 

ORG        100 
Input  //Read input 

Store        N //N=input 

Push*       N //Push N on stack 

Call         Fib //Call subroutine Fib 

Pop*        C //Pop result into C 

Load        C //Load result 
Output  //Print result 

Halt  //Terminate program 

//Subroutine Fib 
Fib,  Limm       1 //AC=1 

Store        $+1 //I=1 

Store        $+3 //B=1 
Limm       0 //AC=0 

Store        $+2 //A=0 

load          $-1 //AC=N 
Subt         $+1 //AC=N-1 

SKIPCOND 800 //If N-1 > 0 goto Loop 

Jump       Done //Otherwise, goto Done 
Loop,  Load        $+3 //AC=B 

Add         $+2 //AC=B+A  

Store        $+4 //C=B+A 

Load        $+3 //AC=B 

Store        $+2 //A=B 

Load        $+4 //AC=C 
Store        $+3 //B=C 

Limm       1 //AC=1 

Add          $+1 //AC=I+1 
Store        $+1 //I=I+1 

Subt         $-1 //AC=I-N 

SKIPCOND 400 //If I=N, goto Done 
Jump       Loop //Otherwise, goto Loop 

Load       $+4 //AC=C 

Store       $-1 //Save result 
Done, JR 

//Global Variable Declarations  

N, DEC        0 //N -- Input to Fib 
C, DEC        0 //Fib(N)-- Output from Fib 



 Similarly, right before calling Fib(N-2) inside Fib(N), N-2 
must be pushed on top of stack. So, the memory address of the 
stack frame for Fib(N) is shifting in terms of $ again as shown 
in Table 6. Meanwhile, when Fib(N-2) returns, its result Fib(N-
2) replaces its input N-2 on top of stack as shown in Table 6 
again. The code to push N-2 on stack is highlighted in red color 
as shown in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Using Recursive Subroutine 
* Push N and Pop C should be expanded according to Table 2 before 

assembling and running  

Finally, right before the Fib(N) returns, the stack frame 
must be restored as shown in Table 4. This means that its return 
address must be on top of stack, i.e., at $ and its result Fib(N) 
which is Fib(N-1) + Fib(N-2) must be stored at $-1. The code 
to accomplish these is highlighted in crimson color as shown in 
Figure 7. 

Table 5: Stack Frame of Recursive Function Fib(N) 

right before calling Fib(N-1) and right after returning from Fib(N-1) 

Location in Stack Memory Address Used for 

$-2 Mem[SP]-2 Input N / Output Fib(N) 

$-1 Mem[SP]-1 Return Address 

$ Mem[SP] Input N-1 / Output Fib(N-1) 

$+1 Mem[SP]+1 Input N-2 / Output Fib(N-2) 

 
Therefore, after Fib(N) returns, its result is on top of stack 

because the subroutine return instruction pops off the return 
address from top of stack and thus the value of stack pointer $ 
is decreased by 1. Then, the main code can pop off the result 
from top of stack. 

Table 6: Stack Frame of Recursive Function Fib(N) 

right before calling Fib(N-2) and right after returning from Fib(N-2) 

Location in Stack Memory Address Used for 

$-3 Mem[SP]-3 Input N / Output Fib(N) 

$-2 Mem[SP]-2 Return Address 

$-1 Mem [SP]-1 Input N-1 / Output Fib(N-1) 

$ Mem [SP] Input N-2 / Output Fib(N-2) 

 

As you may already notice, after the main code pops off the 
result from the stack, the value of stack pointer $ is restored like 
nothing happened. The stack frame of Fib(N) is now destroyed.  

IV. CONCLUSIONS 

In this paper, MarieSimR, a revision to MarieSim [1], is 
presented. It adds the support of the stack by using a reserved 
memory slot to store the stack pointer. The revised instruction 
for subroutine call will push the return address on top of stack 
and the revised instruction for subroutine return will pop off the 
return address from top of stack. Meanwhile, the stack-relative 
address is added. Therefore, a stack frame can be created for a 
subroutine to support using local variables and recursions. A 
new instruction for increasing or decreasing the stack pointer is 
also added to facilitate the stack operations. In addition, a new 
instruction for loading an immediate constant integer into the 
accumulator AC is also added to replace the MARIE instruction 
Clear which loads 0 into the accumulator AC. Finally, a new 
assembler directive is added to support to define a label to hold 
the address of another label symbolically.  

This new revision of MarieSim makes it closer to a real 
machine. At the same time, they do not require to change the 
MarieSim user interface. Users can edit, assemble, run, and 
debug their code for MarieSimR just like for MarieSim. Users 
can observe the stack pointer and the contents in stack using the 
memory monitor panel of MarieSim environment.  

Please note that when the stack-relative addressing is used, 
the operand address displayed in the instruction panel of the 
MarieSim user interface will be $+Offset, where Offset is a 
hexadecimal number which is equal to a 10-bit integer in 2’s 
complement representation. For examples, the operand address 
of Load $+29 is $+01D, and the operand address of Load $-29 
is $+3E3. Please also note that the machine instruction of Load 
$+29 is 16-bit hexadecimal 1B1D and that machine instruction 
of Load $-29 is 16-bit hexadecimal 1FE3. 

Similarly, the immediate operand in the instructions Limm 
and IncSP is displayed as a hexadecimal number which is equal 
to a 12-bit integer in 2’s complement representation.  

A webpage [6] has been created for students to study this 
revised MARIE computer simulator. Users can use it for more 
interesting assembly language programming assignments that 
requires stack and/or recursion. Students can also modify it to 
make it better. For examples, adding pseudo-instructions push 
and pop. Checking if the user program will overwrite the stack.   
Please note that the new instruction IncSP Imm is not necessary 
because it can be achieved by the following three instructions: 
Limm imm, Add SP, and Store SP. This means that we could 
add a pseudo-instruction to perform IncSP Imm.  

//Main code for MarieSimR 
ORG        100 

Input  //Read input 

Store        N //N=input 
Push*       N //Push N on stack 

Call         Fib //Call subroutine Fib 

Pop*        C //Pop result into C 
Load        C //Load result 

Output  //Print result 

Halt  //Terminate program 

Fib,  Limm      -1 //AC=-1 

 Add         $-1  //AC = N-1 

 Skipcond 800  //If N > 1 do Recursion 
 jump        Done //Otherwise, goto Done 

Recurs, Store        $+1 //Store N-1 to $+1 

 IncSP 1 //Increase SP ($) by 1 
 Call         Fib //Call F(N-1) 

 Limm       -2 //AC = -2 

 Add          $-2 //AC = N-2 
 Store        $+1 //Store N-2 to $+1 

 IncSP 1 //Increase SP ($) by 1 

 Call          Fib //Call F(N-2) 
 IncSP -2 //Restore SP (decrease by 2) 

 Load        $+1 //AC = Fib(N-1)  

 Add         $+2 //AC = F(N-1) + F(N-2) = F(N) 
 Store        $-1 //Store Fib(N) to $-1 

Done, JR 

//Global Variable Declarations  

N,             DEC      0  //N -- Input to Fib 

C,             DEC      0  //f(N)-- Output from Fib 
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