
MarieSimR: The MARIE Computer Simulator

Revision

Xuejun Liang

Department of Computer Science

California State University – Stanislaus

Turlock, CA 95382, USA

xliang@cs.scustan.edu

Abstract – MarieSim is the MARIE computer simulator [1] and

MARIE is an accumulator-based computer architecture model used

in the textbook [2]. MarieSimR, a revision of MarieSim, is developed

to support the use of stack and recursive subroutine. Users can learn

and practice more assembly language programming skills with using

MarieSimR. In this revision, the stack pointer stored in a reserved

memory location and the stack-relative addressing mode are added.

The subroutine call and return instructions are revised to use the

stack for the subroutine return address. A stack frame can be created

for a subroutine to hold the return address, input arguments, output

results, local variables and so on. A new instruction for increasing

or decreasing the value of the stack pointer is added to facilitate the

push and pop operations. In addition, a new instruction for loading

an immediate constant into the accumulator is added to replace the

clear instruction. Finally, a new assembler directive is also added to

support for defining a label to hold the address of another label

symbolically. In this paper, the design and implementation of this

revision are presented. Two programming applications are also

discussed to illustrate how to utilize these new instructions.

Keywords - Computer Organization and Architecture, Simulator,

Accumulator Machine, Assembly Language Programming

I. INTRODUCTION

Assembly language programming and writing, using and
modifying processor simulators are major hands-on assignment
categories in an undergraduate computer architecture course [3].
There are many computer architectures with different instruction
formats such as stack-based, accumulator-based, register-based,
two-address, or three-address machine. Linda Null and Julia
Lobur designed an accumulator-based computer architecture
model called MARIE (the Machine Architecture that is Really
Intuitive and Easy) and its simulator called MarieSim [1] which
is used in their popular textbook [2] to teach beginning computer
organization and architecture. Users can assemble, execute, and
debug their assembly language program and track the values of
internal CPU registers and the memory contents in MarieSim
environment during the execution of each instruction. But,
MarieSim is too simple and thus unable to support some
important concepts in computer architecture such as the
immediate addressing mode, the stack, and thus recursive
subroutines. Meanwhile, MarieSim assembler does not support
for defining a label (pointer) to hold the address of another label
symbolically. Programmers have to compute (count) the address
of a label manually and then hardcode it into their code.

In order to solve these problems, MarieSimR, a revision of
MarieSim, is developed. In MarieSimR, an assembler directive
Lab is added for defining a label to hold the address of another
label symbolically. An instruction Limm is added for loading an
immediate constant into the accumulator AC. This instruction is
an extension of MARIE instruction Clear which loads zero into
AC. More importantly, a stack pointer that is stored in a reserved
memory location SP and the stack-relative addressing mode are
added. Meanwhile, a new subroutine call instruction Call and a
new subroutine return instruction JR are added to use the stack
for saving and getting the return address, respectively. They will
replace the MARIE subroutine call and return instructions JNS
and JUMPI, respectively, which use the memory slot just before
the first instruction of the subroutine for the return address. In
addition, a new instruction IncSP for increasing or decreasing
the value of the stack pointer is added to facilitate the stack
operations. With this new revision, a stack frame can be built for
a subroutine to hold the return address, input arguments, output
results, local variables, etc. and thus recursive subroutines can
be supported.

In the rest of the paper, the MARIE instruction set and its
revision are described in Section II. Two example applications
are discussed to illustrate how to utilize the new revision and to
compare MarieSim and MarieSimR in Section III. The first
application is to compute the sum of an array of numbers and the
second is to compute the Fibonacci numbers in which different
programming techniques are used so that students can have a
better understanding of global variables, local variables, stack,
subroutine, and recursion. Finally, a conclusion is given in
Section IV.

II. MARIE INSTRUCTION SET AND ITS REVISION

The MARIE architecture is an accumulator-based computer
architecture model and has the following characteristics: (1) 2's
complement data representation, (2) fixed word length data and
instructions, (3) 4K words of word-addressable main memory,
(4) 16-bit data words, (5) 16-bit instructions, 4 for the opcode
and 12 for the address, (6) A 16-bit arithmetic logic unit (ALU),
and (7) Seven registers for control and data movement. The goal
of this work is to revise MARIE to support stack and recursive
subroutines without changing its above characteristics and its
microarchitecture for control unit. Note that the seven registers
are not accessible to assembly language programmers.

mailto:xliang@cs.scustan.edu

In order to support stack, a user-accessible stack pointer (the
address of top of stack) must be added into MARIE. Instead of
using a dedicated register, a reserved memory location is used
to store the stack pointer. As shown in Figure 1, stack pointer is
stored at the reserved memory location SP which is 3071. Here,
Mem[SP] means the memory content at the location SP. User
programs and data occupy the low address region from 0 to 3070
and stack occupies the high address region from 3072 to 4095.
Note that the stack uses 1K out of 4K MARIE memory space
and grows towards the higher address end.

Figure 1: MARIE Memory Map After Extension

There are two reasons for using a reserved memory location
rather than a dedicated register to store the stack pointer. First,
there is no space to add one more register in the MARIE datapath
without changing its microarchitecture for control unit. Second,
if a dedicated stack pointer register is used, the user interface of
MARIE simulator has to be changed to display the value of the
stack pointer register. On the other hand, if a reserved memory
location is used, users can observe the value of the stack pointer
from the memory monitor panel in the current MARIE simulator
user interface without any changes.

The MARIE instructions and the revised/new instructions
(in red color) are shown in Table 1. MARIE has 15 instructions
currently. The MARIE subroutine call and return instructions
JnS and JumpI are replaced by Call and JR, respectively. The
new subroutine call instruction Call pushes the return address on
top of stack, while the new subroutine return instruction JR gets
the return on top of stack. The MARIE instruction Clear which
resets AC to zero is replaced by the new instruction Limm which
loads an immediate number into AC. Finally, a new instruction
IncSP is added to increase or decrease the value of stack pointer
by a constant amount.

Note that in Table 1, X can be either a hexadecimal literal or
a label (symbol) and is used as a memory address in MarieSim.
Mem[X] represents the content at the memory location X. PC is
the program counter which holds the address of the instruction
to be executed next. Imm is a decimal constant integer. Note that
the range of X is from 0 to 4095, while the range of Imm is from
-2048 to 2047. They both occupy 12 bits inside an instruction
and an opcode takes 4 bits inside an instruction. The total length
of an instruction is 16 bits.

In MarieSimR, when using direct or indirect addressing, X
is the same as that in MarieSim. But when using stack-relative
addressing, X has the format: $ ± Offset, where $ represents the
value of stack pointer which is stored in the reserved memory
location SP and Offset is a 10-bit decimal constant integer. The

2 bits right before Offset inside an instruction are set to be 11.
This indicates that stack-relative addressing is used. The address
represented by $ ± Offset is equal to Mem[SP] ± Offset. Please
note that both the value of the stack pointer and the contents in
stack can be observed from the memory monitor panel in the
MarieSim user interface.

Table 1: MARIE Instruction Set and Its Revision

Opcode Instruction Meaning

0000 JnS X Mem[X] PC & PC X+1

Call X Push PC & PC X

0001 Load X AC Mem[X]

0010 Store X Mem[X] AC

0011 Add X AC AC + Mem[X]

0100 Subt X AC AC – Mem[X]

0101 Input AC value from keyboard

0110 Output Display value in AC on screen

0111 Halt Terminate program

1000 Skipcond 000 Skip next instruction if AC < 0

Skipcond 400 Skip next instruction if AC = 0

Skipcond 800 Skip next instruction if AC > 0

1001 Jump X PC X

1010 Clear AC 0

Limm Imm AC Imm

1011 AddI X AC AC + Mem[Mem[X]]

1100 JumpI X PC Mem[X]

JR POP PC

1101 LoadI X AC Mem[Mem[X]]

1110 StoreI X Mem[Mem[X]] AC

1111 IncSP Imm Mem[SP] += Imm

Two important operations on stack are push and pop. Push

X operation will push memory content at memory address X, i.e.
Mem[X], on top of stack and Pop X operation will store the
content on top of stack in memory location X and remove it from
stack. These two operations can both be implemented by three
assembly instructions as shown in Table 2. Push X will increase
the value of stack pointer (Mem[SP]) by one first and then stores
Mem[X] on top of stack. On the other hand, Pop X will store the
content on top of stack in memory location X first and then
decreases the value of stack pointer by one.

Table 2: Push and Pop Operations

Push X Pop X

IncSP 1

Load X

StoreI SP

loadI SP

Store X

IncSP -1

Note that the Push X and Pop X operations will be used in

the assembly language programs in this paper for the sake of
saving space. In order to assemble and to run the programs, you
must expand Push X and Pop X, i.e., replace them with their
corresponding sequences of instructions as shown in Table 2,
respectively.

0

Program and data

Region (3K-1)

Stack Region (1K)

Mem[SP] SP 3071

3072

3070

4095

A. MARIE Directives and One New Directive

Directives are instructions to assemblers. MarieSim has five
directives. Directive ORG defines the starting address of the
program. Directives DEC, OCT, and HEX define named
constant (or variable) in decimal, octadecimal, and hexadecimal,
respectively. Directive END indicates the end of the program.
MarieSimR adds one more directive LAB which defines a
named hexadecimal constant (or variable) specified either by a
hexadecimal literal or a label symbolically.

III. ASSEMBLY LANGUAGE PROGRAM EXAMPLES USING

MARIESIM AND MARIESIMR

In the following subsections, two simple examples are used
to illustrate how to write assembly language programs to deal
with array, loop, function, and recursion by using MarieSimR.
Meanwhile, comparisons between MarieSim and MarieSimR
are also discussed. The first example is to compute sum of all
values in an array. The second example is to compute Fibonacci
number. Note that very similar examples were used to show how
to write assembly language programs for different instruction
formats in [4, 5].

A. Sum of an Array of Numbers

This example is to compute sum of an array of numbers. As
shown in Figure 2, The code in the middle is for MarieSim but
it works fine in MarieSimR as well, the code on the right is for
MarieSimR only, and the left is the memory address of each
corresponding instruction or data on its right.

Figure 2: Compute Sum of Numbers in An Array

It can be seen that both codes use indirect addressing to
access each number in the array stored in the memory starting

from the memory location Dat. Using MarieSim, users must
calculate the memory address of Dat manually and then use this
constant address where is needed. Note that the memory address
of Dat is hexadecimal 0x117 because the code starts from 0x100
and each instruction occupies one memory location and each
data occupies one memory location as well. On the other hand,
using MarieSimR, user can use the label Dat where is needed by
using the new assembler directive Lab. Then, the assembler will
compute the memory address of Dat. The code related with this
comparison is highlighted in red color in Figure 2.

Another comparison is about how to deal with immediate
constant operand. The related code in this compassion is
highlighted in the blue color in Figure 2. The new instruction
Limm in MarieSimR allows to load a constant number into the
accumulator AC, while in MarieSim, a constant number must be
stored in memory before it can be loaded into AC. Therefore, the
code for MarieSim must define a named constant One to hold
the constant number 1 in order to add 1 or subtract 1. But the
code for MarieSimR does not need to define such a named
constant.

B. Compute Binonacci Numbers

The Fibonacci number can be computed by the formula

𝐹𝑖𝑏(𝑁) = {
𝑁 𝑖𝑓 𝑁 < 2

𝐹𝑖𝑏(𝑁 − 1) + 𝐹𝑖𝑏(𝑁 − 2) 𝑖𝑓 𝑁 ≥ 2

Four methods will be used to compute it. The first is using a
main program with a loop, the second using a non-recursive
function with global variables, the third using a non-recursive
function with local variables, and the fourth using a recursive
function. Note that the first two methods can be applied in both
MarieSim and MarieSimR. But the last two methods can only
be applied in MarieSimR.

1) Using a Loop

Figure 3 shows a C++ code that computes the Fibonacci
number using the main program with a loop, where the number
N is a user input. The control constructs used in this C++ code
will be used (translated) in the assembly language programs
later so that comparisons can be made. Note that variable A is
used for storing Fib(N-2), B for storing Fib(N-1), C for storing
Fib(N), and I is the loop control variable.

Figure 3: C++ Code: Compute Fibonacci Number

/ Code for MarieSimR

 ORG 100
 Load Addr

 Store Next

 Limm -1
 Add Num

 Store Ctr

Loop, Load Sum
 AddI Next

 Store Sum

 Limm 1
 Add Next

 Store Next

 Limm -1
 Add Ctr

 Store Ctr

 Skipcond 000
 Jump Loop

 Halt

Addr, Lab Dat
Next, Hex 0

Num, Dec 5

Sum, Dec 0
Ctr, Hex 0

Dat, Dec -10
 Dec 15

 Dec -20

 Dec 25
 Dec 30

/ Code for MarieSim
 ORG 100

 Load Addr

 Store Next
 Load Num

 Subt One

Store Ctr
Loop, Load Sum

 AddI Next

 Store Sum
 Load Next

 Add One
 Store Next

 Load Ctr

 Subt One
 Store Ctr

 Skipcond 000

 Jump Loop
 Halt

Addr, Hex 117

Next, Hex 0

Num, Dec 5

Sum, Dec 0

Ctr, Hex 0
One, Dec 1

Dat, Dec -10

 Dec 15
 Dec -20

 Dec 25

 Dec 30

/ Address

0x100

0x101
0x102

0x103

0x104
0x105

0x106

0x107
0x108

0x109
0x10A

0x10B

0x10C
0x10D

0x10E

0x10F
0x110

0x111

0x112

0x113

0x114

0x115
0x116

0x117

0x118
0x119

0x11A

0x11B

int main() { //compute Fib(N)

 int I, A, B, C, N

 std::cin >> N; //get input N

 if (N < 2)

 C = N;

 else {

 A = 0; B = 1;

 for (I = 2; I <= N; I++) {

 C = B + A; A = B; B = C;

 }

 }

 std::cout << C; //display result

 return 0;

}

Figure 4 shows the MarieSim code that computes Fibonacci
numbers using a loop. It works fine in MarieSimR as well. But
the label One is not necessary when using MarieSimR. It can
be removed and hence instructions Load I and Add One should
be replaced by Limm 1 and Add I. The variables I, N, C, B, and
A have the same roles as those in C++ code. The program reads
the input and stores it in both variables N and C. Then, it
computes N-1. If N ≥ 2, it goes to Loop. Otherwise, it goes to
Done. From the label Loop, it computes C=B+A, A=B, and B=C,
increases I by 1, computes I-N, if I=N, it goes to Loop again,
otherwise, it goes to Done. From the label Done, it loads and
prints the result.

Figure 4: Compute Fibonacci Number Using a Loop

2) Using a Non-Recursive Function

Using Global Variables: Figure 5 shows the MarieSim

code on the left and the MarieSimR code on the right. They both

compute the Fibonacci numbers using a non-recursive function

Fib. The global variables like in Figure 4 are defined and used

in both the main routine and the subroutine Fib. The main

routine gets the user input and stores it in N. Then it calls the

subroutine Fib which gets its input from N and saves its result

in C. After Fib returns, the main routine loads the result from C

and prints the result. Because the global variables are used, the

MarieSim code of the subroutine Fib shown in Figure 5 is very

similar with the code shown in Figure 4.

Note that in MarieSim, the subroutine call instruction JnS

Fib stores the return address at the memory location Fib and

thus the first instruction of Fib is at the memory location Fib+1.

So, the subroutine return instruction JumpI Fib gets the return

address at the memory location Fib as well. On the other hand,

in MarieSimR, the subroutine call instruction Call Fib stores

the return address on top of stack and the subroutine return

instruction JR also gets the return address from top of stack. So,

the first instruction of Fib is just at the memory location Fib.

Figure 5: Using Subroutine and Global Variables

Using Local Variables: Local variables are used inside a
function only. When a function is called, its local variables are
created and when the function is returned, its local variables are
no longer available. In a general-purpose register architecture,
the CPU registers are often the first choice for local variables.
When there are not enough registers, local variables will be
allocated their memory spaces from stack. In the accumulator-
based architecture, there is no any general-purpose registers.
So, the stack is the only choice for local variables. In fact, a
stack frame can be created for each function to hold the return
address, input arguments, local variables, output results, and so
on. In general, the stack frame of a function will be created,
maintained, and destroyed by both the calling routine and the
called subroutine. Note that MarieSim does not support stack.
So, the following discussion is for MarieSimR only.

Table 3 shows a stack frame of non-recursive function Fib.
The stack frame contains six memory words in stack. The input
N and the output result share one memory space in stack at $-1
or Mem[SP] -1. The return address is stored in the next location
and it is followed by the local variables I, A, B, and C.

// Code for MarieSim and MarieSimR

ORG 100
Input // Read input

Store N // N=input

Store C // C=N

Subt I // AC = N-1

SKIPCOND 800 // If N-1 > 0, goto Loop

JUMP Done // Otherwise, goto Done
Loop, Load B // AC=B

Add A // AC=B+A

Store C // C=B+A
Load B // AC=B

Store A // A=B

Load C // AC=C
Store B // B=C

Load I // AC=1

Add One // AC=I+1
Store I // I=I+1

SUBT N // AC=I-N

SKIPCOND 400 // If I=N, goto Done
Jump Loop // Otherwise, goto Loop

Done, Load C // Load result

Output // Print result

Halt // Terminate program

// Variable Declarations

I, DEC 1 // Loop control variable
N, DEC 0 // N

C, DEC 0 // Fib(N)

B, DEC 1 // Fib(N-1)
A, DEC 0 // Fib(N-2)

One, DEC 1 // Constant 1

// Code for MarieSim

ORG 100
Input

Store N

JnS Fib
Load C

Output

Halt
// Subroutine Fib

Fib, HEX 0

Load N
Store C

Subt I

SKIPCOND 800
JUMP Done

Loop, Load B

Add A
Store C

Load B

Store A
Load C

Store B

Load I
Add One

Store I

SUBT N
SKIPCOND 400

Jump Loop

Done, JumpI Fib
// Global Variable Declarations

I, DEC 1

N, DEC 0
C, DEC 0

B, DEC 1

A, DEC 0
One, DEC 1

// Code for MarieSimR

ORG 100

Input
Store N

Call Fib

Load C
Output

Halt

// Subroutine Fib

Fib, Load N

Store C

Subt I

SKIPCOND 800

JUMP Done
Loop, Load B

Add A

Store C
Load B

Store A

Load C
Store B

Limm 1

Add I
Store I

SUBT N

SKIPCOND 400
Jump Loop

Done, JR

// Global Variable Declarations
I, DEC 1

N, DEC 0

C, DEC 0
B, DEC 1

A, DEC 0

Table 3: Stack Frame of Non-Recursive Function Fib

Location in Stack Memory Address Used for

$-1 Mem[SP]-1 Input N / Output Fib(N)

$ Mem[SP] Return Address

$+1 Mem[SP]+1 Local Variable I

$+2 Mem[SP]+2 Local Variable A

$+3 Mem[SP]+3 Local Variable B

S+4 Mem[SP]+4 Local Variable C

Figure 6: Using Subroutine and Local Variables

* Push N and Pop C should be expanded according to Table 2 before
assembling and running

Figure 6 shows the code that computes Fibonacci numbers
using a non-recursive function with local variables. As shown
Figure 6, the main routine gets the user input and stores it in N.
Then it pushes the input N on top of stack right before it calls
the subroutine Fib. Note that when a subroutine is called, its
return address is pushed on top of stack by the subroutine call
instruction Call. Because the push operation increases $ (or
Mem[SP]) by 1 (see Table 2), right after entering the subroutine
Fib, the return address is at $ (or Mem[PS]) and the input N is

at $-1 (or Mem[SP]-1). Then, the subroutine Fib uses four
memory locations $+1, $+2, $+3, and $+4 in the stack area for
its local variables I, A, B, and C, respectively. Now, the stack
frame for the subroutine Fib as shown in Table 3 is created.

The code of subroutine Fib in Figure 6 has three parts: (1)
Initialize the local variables I, A, and B (highlighted in red
color), (2) Compute Fib(N) (highlighted in blue color), and (3)
Copy the result to memory location $-1, which overwrites the
input N, right before the return (highlighted in crison color).

Note that the subroutine return instruction JR copies the
return address from top of stack into PC and then decreases the
stack pointer $ (or Mem[SP]) by 1. Therefore, right after the
subroutine Fib returns, the return result is on top of stack (at $).
So, the main routine can pop the result from top of stack. Please
note that the stack frame of Fib is now completely destroyed.
This is, the stack pointer now has the value as that right before
the input N is pushed on stack. Finally, the main routine loads
and prints the result.

3) Using a Recursive Function

Now, the subroutine Fib will be implemented as a recursive
function. Like for the non-recursive function, we need to design
a stack frame for the recursive function. First, we are going to
need one memory slot of stack to store both input N and output
Fib(N). Before calling the function Fib, the input N must be on
top of stack (at $). But, right after calling Fib, stack grows and
the return address is now on top of stack (at $). So, N now is at
$-1. When N < 2, Fib(N) = N. This means that the output is the
input and it is already in the right location in stack as desired.
When N>2, Fib(N) = Fib(N-1) + Fib(N-2). This means that we
need to call Fib twice to compute Fib(N-1) and Fib(N-2) inside
the Fib(N). Therefore, we need two more local memory spaces
inside the stack frame of Fib(N) to store (N-1)/Fib(N-1) and (N-
2)/Fib(N-2). So, the stack frame for Fib(N) needs four memory
spaces in stack region as shown in Table 4.

Table 4: Stack Frame of Recursive Function Fib(N) right after

calling Fib(N) and right before returning from Fib(N)

Location in Stack Memory Address Used for

$-1 Mem[SP]-1 Input N / Output Fib(N)

$ Mem[SP] Return Address

$+1 Mem[SP]+1 Input N-1 / Output Fib(N-1)

$+2 Mem[SP]+2 Input N-2 / Output Fib(N-2)

Figure 7 shows the code that computes Fibonacci numbers

using a recursive function. As shown in Figure 7, the main code
and the global variable declarations are exactly the same as
those in Figure 6.

One important fact is that right before calling Fib(N-1)
inside subroutine Fib(N), N-1 must be pushed on stack. This
will increase the value of $ by 1. This means that right before
calling Fib(N-1), the memory addresses of the stack frame for
Fib(N) are shifting in terms of $ as shown in Table 5. The code
to push N-1 on stack are highlighted in blue code as shown in
Figure 7. Please note that we need to make sure that right after
Fib(N-1) returns, its output Fib(N-1) overwrites its input N-1
and remains on top of stack, i.e., at $, as shown in Table 5.

//Main code for MarieSimR

ORG 100
Input //Read input

Store N //N=input

Push* N //Push N on stack

Call Fib //Call subroutine Fib

Pop* C //Pop result into C

Load C //Load result
Output //Print result

Halt //Terminate program

//Subroutine Fib
Fib, Limm 1 //AC=1

Store $+1 //I=1

Store $+3 //B=1
Limm 0 //AC=0

Store $+2 //A=0

load $-1 //AC=N
Subt $+1 //AC=N-1

SKIPCOND 800 //If N-1 > 0 goto Loop

Jump Done //Otherwise, goto Done
Loop, Load $+3 //AC=B

Add $+2 //AC=B+A

Store $+4 //C=B+A

Load $+3 //AC=B

Store $+2 //A=B

Load $+4 //AC=C
Store $+3 //B=C

Limm 1 //AC=1

Add $+1 //AC=I+1
Store $+1 //I=I+1

Subt $-1 //AC=I-N

SKIPCOND 400 //If I=N, goto Done
Jump Loop //Otherwise, goto Loop

Load $+4 //AC=C

Store $-1 //Save result
Done, JR

//Global Variable Declarations

N, DEC 0 //N -- Input to Fib
C, DEC 0 //Fib(N)-- Output from Fib

 Similarly, right before calling Fib(N-2) inside Fib(N), N-2
must be pushed on top of stack. So, the memory address of the
stack frame for Fib(N) is shifting in terms of $ again as shown
in Table 6. Meanwhile, when Fib(N-2) returns, its result Fib(N-
2) replaces its input N-2 on top of stack as shown in Table 6
again. The code to push N-2 on stack is highlighted in red color
as shown in Figure 7.

Figure 7: Using Recursive Subroutine
* Push N and Pop C should be expanded according to Table 2 before

assembling and running

Finally, right before the Fib(N) returns, the stack frame
must be restored as shown in Table 4. This means that its return
address must be on top of stack, i.e., at $ and its result Fib(N)
which is Fib(N-1) + Fib(N-2) must be stored at $-1. The code
to accomplish these is highlighted in crimson color as shown in
Figure 7.

Table 5: Stack Frame of Recursive Function Fib(N)

right before calling Fib(N-1) and right after returning from Fib(N-1)

Location in Stack Memory Address Used for

$-2 Mem[SP]-2 Input N / Output Fib(N)

$-1 Mem[SP]-1 Return Address

$ Mem[SP] Input N-1 / Output Fib(N-1)

$+1 Mem[SP]+1 Input N-2 / Output Fib(N-2)

Therefore, after Fib(N) returns, its result is on top of stack

because the subroutine return instruction pops off the return
address from top of stack and thus the value of stack pointer $
is decreased by 1. Then, the main code can pop off the result
from top of stack.

Table 6: Stack Frame of Recursive Function Fib(N)

right before calling Fib(N-2) and right after returning from Fib(N-2)

Location in Stack Memory Address Used for

$-3 Mem[SP]-3 Input N / Output Fib(N)

$-2 Mem[SP]-2 Return Address

$-1 Mem [SP]-1 Input N-1 / Output Fib(N-1)

$ Mem [SP] Input N-2 / Output Fib(N-2)

As you may already notice, after the main code pops off the
result from the stack, the value of stack pointer $ is restored like
nothing happened. The stack frame of Fib(N) is now destroyed.

IV. CONCLUSIONS

In this paper, MarieSimR, a revision to MarieSim [1], is
presented. It adds the support of the stack by using a reserved
memory slot to store the stack pointer. The revised instruction
for subroutine call will push the return address on top of stack
and the revised instruction for subroutine return will pop off the
return address from top of stack. Meanwhile, the stack-relative
address is added. Therefore, a stack frame can be created for a
subroutine to support using local variables and recursions. A
new instruction for increasing or decreasing the stack pointer is
also added to facilitate the stack operations. In addition, a new
instruction for loading an immediate constant integer into the
accumulator AC is also added to replace the MARIE instruction
Clear which loads 0 into the accumulator AC. Finally, a new
assembler directive is added to support to define a label to hold
the address of another label symbolically.

This new revision of MarieSim makes it closer to a real
machine. At the same time, they do not require to change the
MarieSim user interface. Users can edit, assemble, run, and
debug their code for MarieSimR just like for MarieSim. Users
can observe the stack pointer and the contents in stack using the
memory monitor panel of MarieSim environment.

Please note that when the stack-relative addressing is used,
the operand address displayed in the instruction panel of the
MarieSim user interface will be $+Offset, where Offset is a
hexadecimal number which is equal to a 10-bit integer in 2’s
complement representation. For examples, the operand address
of Load $+29 is $+01D, and the operand address of Load $-29
is $+3E3. Please also note that the machine instruction of Load
$+29 is 16-bit hexadecimal 1B1D and that machine instruction
of Load $-29 is 16-bit hexadecimal 1FE3.

Similarly, the immediate operand in the instructions Limm
and IncSP is displayed as a hexadecimal number which is equal
to a 12-bit integer in 2’s complement representation.

A webpage [6] has been created for students to study this
revised MARIE computer simulator. Users can use it for more
interesting assembly language programming assignments that
requires stack and/or recursion. Students can also modify it to
make it better. For examples, adding pseudo-instructions push
and pop. Checking if the user program will overwrite the stack.
Please note that the new instruction IncSP Imm is not necessary
because it can be achieved by the following three instructions:
Limm imm, Add SP, and Store SP. This means that we could
add a pseudo-instruction to perform IncSP Imm.

//Main code for MarieSimR
ORG 100

Input //Read input

Store N //N=input
Push* N //Push N on stack

Call Fib //Call subroutine Fib

Pop* C //Pop result into C
Load C //Load result

Output //Print result

Halt //Terminate program

Fib, Limm -1 //AC=-1

 Add $-1 //AC = N-1

 Skipcond 800 //If N > 1 do Recursion
 jump Done //Otherwise, goto Done

Recurs, Store $+1 //Store N-1 to $+1

 IncSP 1 //Increase SP ($) by 1
 Call Fib //Call F(N-1)

 Limm -2 //AC = -2

 Add $-2 //AC = N-2
 Store $+1 //Store N-2 to $+1

 IncSP 1 //Increase SP ($) by 1

 Call Fib //Call F(N-2)
 IncSP -2 //Restore SP (decrease by 2)

 Load $+1 //AC = Fib(N-1)

 Add $+2 //AC = F(N-1) + F(N-2) = F(N)
 Store $-1 //Store Fib(N) to $-1

Done, JR

//Global Variable Declarations

N, DEC 0 //N -- Input to Fib

C, DEC 0 //f(N)-- Output from Fib

REFERENCES

[1] Linda Null and Julia Lobur, MarieSim: The MARIE computer simulator,
Journal on Educational Resources in Computing, Volume 3, Issue 2, June
2003, pp 1–29.

[2] Linda Null and Julia Lobur, The essentials of computer organization and
architecture, 5th Edition, Jones & Bartlett Learning, 2019

[3] Xuejun Liang, A survey of hands-on assignments and projects in
undergraduate computer architecture courses, in Proceedings of
International Joint Conferences on Computer, Information, and Systems
Sciences, and Engineering (CISSE 07), December 3-12, 2007.

[4] Xuejun Liang, Computer Architecture Simulators for Different
Instruction Formats, in the proceedings of The 6th Annual Conference on
Computational Science and Computational Intelligence (CSCI 2019), pp.
806-811, Las Vegas, Nevada, USA, Dec 05-07, 2019

[5] Xuejun Liang, More on Computer Architecture Simulators for Different
Instruction Formats, in the proceedings of 2020 International Conference
on Computational Science and Computational Intelligence (CSCI 2020),
pp. 910-916, Las Vegas, Nevada, USA, Dec 16-18, 2020.

[6] Xuejun Liang, MarieSimR: The MARIE Computer Simulator Revision
Webpage, the last access date: Nov 10, 2021, available at
https://www.cs.csustan.edu/~xliang/Courses/MarieSimRWeb

https://www.cs.csustan.edu/~xliang/Courses/MarieSimExWeb/index.htm

