Science Projects

Prerequisites:
A knowledge of computer graphics through modeling, viewing, and color, together with
enough programming experience to implement the images defined by the science that will be
discussed in this section.

Graphics to be learned from these projects:
Implementing sound modeling and visual communication for various science topics.

This module contains a varied collection of science-based projects that students can do with the
knowledge of graphics that they have at this point: modeling, viewing, and color. These projects
are not as sophisticated as one would see in professional scientific visualization, but are a sound
beginning towards that level of sophistication. The projects cover a wide range of sciences and of
topics with the sciences, grouped roughly so that similar kinds of graphics can be brought to bear
on the problems. This will allow the student to understand the similarities between problems in the
different areas of science and perhaps can help the student see that one can readily adapt solutions
to one problem in creating solutions to a similar problem in a totally different area.

Each problem described below will include the following kinds of information:
• A short description of the science in the problem
• A short description of the modeling of the problem in terms of the sciences
• A short description of the computational modeling of the problem, including any assumptions
 that we make that could simplify the problem and the tradeoffs implicit in those assumptions
• A description of the computer graphics modeling that implements the computational modeling
• A description of the visual communication in the display, including any dynamic components
 that enhance the communication
• An image from an implementation of the model in OpenGL
• A short set of code fragments that make up that implementation

There are enough topics that this is a fairly long chapter, but it is very important for the student to
look at this in depth, because an understanding of the science and of the scientific modeling is at
the heart of any good computational representation of the problem and thus at the heart of the
computer graphics that will be presented.

This module also includes a couple of appendices that are needed for the graphical presentations of
molecules that are part of this chapter.

Projects:

Projects that model diffusion of a quantity in a region

1. Temperature in a metal bar

A classical physics problem is the heat distribution in a metallic bar with fixed heat sources and
cold sinks. That is, if some parts of the bar are held at constant temperatures, we ask for the way
the rest of the bar responds to these inputs to achieve a steady-state temperature. We model the
heat distribution with a diffusion model, where the heat in any spot at time $t+1$ is determined by
the heat in that spot and in neighboring spots at time t. We model the bar as a grid of small
rectangular regions and assume that the heat flows from warmer grid regions into cooler grid
regions, so the temperature in one cell at a given time is a weighted sum of the temperatures in
neighboring cells at the previous time. The weights are given by a pattern such as the following,
where the current cell is at row m and column n:
<table>
<thead>
<tr>
<th>row</th>
<th>n-1</th>
<th>n</th>
<th>n+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>m+1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>m</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>m-1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

That is, the temperature at time $t+1$ is the weighted sum of the temperatures in adjacent cells with the weights given in the table. Thus the heat at any grid point at any time step depends on the heat at previous steps through a function that weights the grid point and all the neighboring grid points. See the code sample below for the implementation of this kind of weighted sum. In this sample, we copy the original grid, `temps[][]`, into a backup grid, `back[][]`, and then compute the next set of values in `temps[][]` from the backup grid and the filter. This code is found in the idle callback and represents the changes from one time step to the next.

```c
float filter[3][3]={{ 0.0625, 0.125, 0.0625 },
{ 0.125, 0.25, 0.125 },
{ 0.0625, 0.125, 0.0625 } );

// first back temps up so you can recreate temps
for (i=0; i<ROWS; i++)
    for (j=0; j<COLS; j++)
        back[i+1][j+1] = temps[i][j];
for (i=1; i<ROWS+2; i++) {
    back[i][0]=back[i][1];
    back[i][COLS+1]=back[i][COLS];
}
for (j=0; j<COLS+2; j++) {
    back[0][j] = back[1][j];
    back[ROWS+1][j]=back[ROWS][j];
}

// use diffusion based on back values to compute temp
for (i=0; i<ROWS; i++)
    for (j=0; j<COLS; j++) {
        temps[i][j]=0.0;
        for (m=-1; m<=1; m++)
            for (n=-1; n<=1; n++)
                temps[i][j]+=back[i+1+m][j+1+n]*filter[m+1][n+1];
}

// reset the temperatures of the hot and cold spots
for (i=0; i<NHOTS; i++) {
    temps[hotspots[i][0]][hotspots[i][1]]=HOT; }
for (i=0; i<NCOLDS; i++) {
    temps[coldspots[i][0]][coldspots[i][1]]=COLD; }

// finished updating temps; now do the display
glutPostRedisplay(); /* perform display again */
```

The behavior of the model is to reach a steady state in which the hot and cold spots stay fixed and all the other points in the region reach an intermediate temperature with the overall inflow and outflow of heat are the same. The display at one step in the process is shown in Figure 6.1.

The display was discussed earlier in the module on visual communication, but it bears reviewing here. Each grid element is displayed as a bar (a vertically-scaled cube, translated to the position of the element) whose height and color are determined by the temperature. This provides a dual encoding of the temperature information, and the image is rotated slowly around its center so the viewer can see the bar from all directions. Variations on the display would include color-only,
height-only, and varying the amount of the rotations (including the possibility of having no rotation so the user sees only the same view and can focus only on the color changes).

Figure 6.1: state of the heat in the bar as it moves towards stabilization

This process is readily modeled by modeling the problem in terms of changes between time steps, and updating the temperatures at step \(t+1 \) from those at step \(t \) using the process described above. As a first graphics project, we need to deal with three things: defining a grid of temperatures and modeling how the temperatures change from step to step, defining how the temperatures can be modeled as a height field on the grid, and displaying the height field as a collection of rectangular boxes that are scaled cubes whose color depends on the temperature. We thus have two ways to encode temperature information, which allows a discussion of which encoding is more informative. In addition to a simple display of the image with changing colors and heights, we suggest adding an automatic rotation of the image in order to allow the student to see how the height field looks from all directions. The example in the figure shows this dual encoding as well as the effect of different hot and cold spots in the bar.

2. Spread of disease in a region

In this problem, we have an infectious disease (the original model was malaria) that arises in one location and spreads both within and between regions. The model is based on a few simple premises: that disease is spread by contact between infected and susceptible persons, that contact is approximated by the product of the number of infected persons and the number of susceptible persons, and that a certain proportion of infected persons recover and become immune at any given time. If we represent the numbers of susceptible, infected, and recovered persons by the functions \(S, I, \) and \(R \) of time, respectively, then a single-population infection is modeled by the three difference equations

\[
\begin{align*}
S(n+1) &= S(n) - a*I(n)*S(n) \\
I(n+1) &= I(n) + a*I(n)*S(n) - b*S(n) \\
R(n+1) &= R(n) + b*S(n)
\end{align*}
\]

with initial conditions \(S(0) = P - e; I(0) = e; R(0) = 0 \) and with constants \(a \) and \(b \) representing the rates of infection and recovery. However, if we include the concept of multiple regions with separate populations in each region, this model is complicated by the interaction of infected populations in one region with the susceptible populations in adjacent regions. This changes the model of new infections from the simple \(a*I(n)*S(n) \) to a more complex version that includes the contact rate between persons from adjacent regions. In the real world, we can imagine that there are some regions with no contact between populations, so the full model includes some regions in which the disease cannot spread because of lack of contact. To avoid all the complexities of how this could happen, we assume in this model that there is no contact across lakes or rivers.

The computer implementation of this model illustrates the more complex contact situation. Here we model the regions as an array of populations, with each having an internal population dynamic. The regions are very homogeneous in our model, but could be made more complex. We also include the lake and river concept by making some regions have populations of zero, which is an
effective way to ensure that no contact, and hence no spread of disease, can happen. In our model, these regions are colored blue to distinguish them from the other regions. The primary code for the model is in the idle callback, and we show this and the initialization code for the regions below. The code to back up the working array is the same as that in the model for heat transfer and is omitted here to save space. The code for the legend is not presented here because that is presented in the visual communication module above.

```c
// set up initial states
for (i=0; i<ROWS; i++) {
    for (j=0; j < COLS; j++) {
        regions[i][j].s = P;
        regions[i][j].i = regions[i][j].r = 0.;
        regions[i][j].aN = regions[i][j].aE =
            regions[i][j].aS = regions[i][j].aW = 0.01;
    }
}

// exceptions: lake and other barriers; initial infection in one region
for (i = 25; i<36; i++ )
    for (j=25; j<36; j++ ) {
        regions[i][j].s = 0.;
        regions[i][j].aN = regions[i][j].aE =
            regions[i][j].aS = regions[i][j].aW = 0.0;
    }
for (i = 36; i<50; i++ )
    for (j=25; j<27; j++ ) {
        regions[i][j].s = 0.;
        regions[i][j].aN = regions[i][j].aE =
            regions[i][j].aS = regions[i][j].aW = 0.0;
    }
regions[20][20].i = 200.;
regions[20][20].s = P - 200.;

void animate(void)
{
    // use diffusion based on model using back values to compute temp
    for (ii=0; ii<ROWS; ii++)
        for (jj=0; jj<COLS; jj++) {
            i = ii+j; j = jj+i;
            newi = alpha*back[i][j].i*back[i][j].s;
            if (i!=0)
                newi += alpha*(back[i][j].aN*back[i-1][j].i*back[i][j].s);
            if (j!=COLS)
                newi += alpha*(back[i][j].aE*back[i][j+1].i*back[i][j].s);
            if (i != ROWS)
                newi += alpha*(back[i][j].aS*back[i+1][j].i*back[i][j].s);
            if (j != 0)
                newi += alpha*(back[i][j].aW*back[i][j-1].i*back[i][j].s);
            regions[ii][jj].r += beta * back[ii][jj].i;
            regions[ii][jj].i = (1.-beta)*back[ii][jj].i + newi;
            regions[ii][jj].s = back[ii][jj].s - newi;
        }
    glutPostRedisplay();
}
```

The display in Figure 6.2 is presented as a rotation region on the left and a stationary legend on the right. As the region on the left rotates, each rotation step corresponds to a time step for the infection simulation, showing how the infection spreads and goes around the barrier regions. This
allows a user the chance to examine the nature of the disease spread and, by watching the behavior of the infection in adjacent regions, to see what amounts to the history of the infection in a single population. One could vary the display by adjusting the rate of rotation (down to zero), by randomizing some of the parameters of the simulation, or by using color alone for the display.

Figure 6.2: the malaria spread model showing the behavior around the barrier regions

An interesting extension of the simulation would be to experiment with the barriers that force the disease spread to take on interesting directions, and to consider more sophisticated models of heterogeneous populations or differing population interactions. The most critical thing to notice is probably that as long as there is any population interaction at all, the disease will spread to the new population; any attempt to control the spread of the infection will fail unless the separation is complete.

Projects that display scientific objects

3. Simple molecule display

These projects ask a student to read the description of a molecule in a standard format (see the appendices for two standard molecule file formats) and display the resulting molecule in a way that supports simple manipulations such as rotation, zooming, transparency, and clipping. These are straightforward projects that require the student to extract information from a file and use that information to determine the geometry of the molecule to display it. They cover most of the topics one would want to include in an introductory computer graphics course, and the sequence of the topics is fairly standard. The instructor should be aware, however, that the project sequence for students from different disciplines may not draw on graphics topics in exactly the same way, so there may need to be some adjustment of the project sequencing that makes allowance for these differences.

The information with this project set includes source code for an extensive project implementation. This source includes essentially the full set of project functionality, including reading the file and handling the keyboard and menu implementation. The author has tried to create good practice in design and code, but others might find better ways to carry out these operations. Other instructors are encouraged to look at this code critically in order to determine whether it meets their standards.
for examples and to share any improvements with the author so they can be incorporated in the example for others.

An important part of making a project such as this accessible to the student is to provide information that describes how the atoms in the molecules should be displayed. This information is in the file \texttt{molmodel.h} that is provided with this project. The file includes atom names, colors, and sizes so that a student can pick up information directly from the input file and match each atom name with the appropriate sizes and colors for the display.

The display of a program that satisfies this project will be something like the images in the figure below from two different molecule description files. These figures use atom names and positions from the atom-position information in the molecule description files and bond linkages and types from those files, along with colors and sizes from the \texttt{molmodel.h} file, to achieve a standard look for the molecule. In order to get students to look at the chemistry, however, and not just the images, it probably is necessary to have them work with several different molecule files and try to relate the images with specific chemical questions such as the kind of reactions in which the molecules participate. We hope that the set of sample molecule files included with this module will provide instructors enough examples that students can make these connections, but the author is not a chemist and it is will certainly be useful to talk with chemists at your institution to find out how to make your projects relate directly to their individual course content.

The molecular model file will give you the positions and identities of each atom and the linkages between individual atoms in the molecule. These are read into arrays by two functions that are available at the online site, and the contents of the arrays are parsed to determine the color, size, and position of each atom and the linkages between them. Declarations for the arrays and code to produce the images is:

```c
// data for storing molecular description
int natoms, nbonds;
type struct atomdata {  
    float x, y, z;  
    char name[5];  
    int colindex;  
} atomdata;
atomdata atoms[AMAX];
type struct bonddata{  
    int first, second, bondtype;  
} bonddata;
bonddata bonds[BMAX];

void molecule(void) {  
#define ANGTOAU(ang)  ((ang)*0.529177)  
#define DBGAP 0.05  
    int i, j, startindex, endindex, bondtype;  
    GLUquadric *atomSphere;  
    GLfloat color1[]= {1.0, 0.0, 0.0, 0.7};  
    GLfloat color3[]= {0.0, 1.0, 1.0, 1.0};  
    GLfloat mat_shininess[]= {50.0};  
    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, bondBlack );  
    glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess );  
    // use the location and link material that was read from the file  
    // to display the molecule  
    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, bondBlack );

6/10/00
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, bondBlack);
for (i=0; i<nbonds; i++)
{
    // draw the bonds - note that the file is 1-origin indexed
    // while our tables are 0-origin indexed (language is C)
    startindex = bonds[i].first-1;    // so we decrease index by 1
    endindex   = bonds[i].second-1;
    bondtype   = bonds[i].bondtype;
    if (bondtype == 1) {
        glLineWidth(5.0);
        glBegin(GL_LINE_STRIP);
        glVertex3f(atoms[startindex].x,atoms[startindex].y,
                    atoms[startindex].z);
        glVertex3f(atoms[endindex].x,atoms[endindex].y,
                    atoms[endindex].z);
        glEnd();
    }
    if (bondtype == 2) {
        glLineWidth(3.0);
        glBegin(GL_LINE_STRIP);
        glVertex3f(atoms[startindex].x-DBGAP,
                    atoms[startindex].y-DBGAP, atoms[startindex].z-DBGAP);
        glVertex3f(atoms[endindex].x-DBGAP,atoms[endindex].y-DBGAP,
                    atoms[endindex].z-DBGAP);
        glEnd();
        glBegin(GL_LINE_STRIP);
        glVertex3f(atoms[startindex].x+DBGAP,
                    atoms[startindex].y+DBGAP, atoms[startindex].z+DBGAP);
        glVertex3f(atoms[endindex].x+DBGAP,atoms[endindex].y+DBGAP,
                    atoms[endindex].z+DBGAP);
        glEnd();
    }
}

for (i=0; i<natoms; i++)
{
    // draw the atoms
    glPushMatrix();
    atomSphere=gluNewQuadric();
    j = atoms[i].colindex;    // index of color for atom i
    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, atomColors[j] );
    glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, atomColors[j] );
    glTranslatef(atoms[i].x, atoms[i].y, atoms[i].z);
    gluSphere(atomSphere, ANGTOAU(atomSizes[j]), GRAIN, GRAIN);
    glPopMatrix();
    glutSwapBuffers();
}

The presentation of the molecules is simply a display of the geometry that you interpret from the arrays. The examples shown in Figure 6.3 below use some blending to show the bond structure from the center of each atom and use a single white light to display the shape of the spheres. It uses the standard sizes of the atoms, although one could also use the Bohr radius of atoms to create a view without exposed bonds.
This project can include a great deal of interaction, with keyboard and menu controls to allow the molecule to be viewed in several different ways. The keyboard could control rotation of the molecule (in the three standard axes) and zooming the view in or out. A menu could control other parts of the display such as the size and transparency of atoms, and could provide an alternate to the zoom in/out so students can compare keyboard and menu functionality for detailed control.

A suggested extension of this project would be to present two molecules in side-by-side viewports and allow the user to select one and move it around to compare it to the other. This has application in understanding similarity of structures. Another extension would be to present two molecules in a single window and allow one to be manipulated in trying to dock it with the other. This is a more complex issue because it could involve computing collisions and might need things like cutaway or partially transparent molecules, but it has very important applications and might be workable for simple molecules.

4. Displaying the conic sections

One of the common things students hear in algebra and calculus is that the graphs of quadratic expressions are all curves produced by conic sections, by intersections of a plane with a cone. This project allows students to generate the various conic sections by drawing a cone and clipping that cone with a plane, and to observe the shapes of the resulting curves.

The computer modeling is fairly straightforward. It involves creating a dual cone through simple triangle strips, defining the axes, and adding a clipping plane. Rotating the model is simple with keyboard control, and a menu allows the user to choose the clipping plane that is moved forward and backward with another keyboard control. At this point we are not concerned about the menu and keyboard control, but only deal with creating the conic section and the axes, and about seeing the clipping plane work.

```c
void cone(void)
{
 ... // declarations and material definitions here

 aStep = 3.14159/(float)GRAIN;
 glBegin(GL_TRIANGLE_FAN); // top half of double cone
 glVertex3f(0.0, 0.0, 0.0);
 for (i=0; i<=GRAIN; i++) {
```
myAngle = (float)i*aStep*2.0;
glVertex3f(RADIUS*cos(myAngle), RADIUS*sin(myAngle), HEIGHT);
}
}

void display( void )
{
    ... // viewing and other operations here
    // note that the axes are drawn with the clip plane *OFF*
    disable(GL_CLIP_PLANE1);
    drawAxes(3.0);
    enable(GL_CLIP_PLANE1);
    clipPlane(GL_CLIP_PLANE1, myClipPlane);
    cone();
    glutSwapBuffers();
}

Figure 6.4 below shows two screen captures from the sample that illustrate what the project can do, and the student and instructor is encouraged are experiment with the code and the project to try out the interaction. Because the object of the project is to see the conic sections in the context of the cone itself, the visual communication in the project is simply presenting the geometry in the interactive setting where the user can see the section in context. The project includes keyboard control that moves the clipping plane through three-space while maintaining its orientation, letting the student experiment with different positions of the clipping plane. This is a particularly good project for getting students to think about what interface options work for this kind of geometric process.

Figure 6.4: examples of two conic section displays (left: hyperbola; right: ellipse)

Projects that represent a real function of two variables

Surfaces are plotted as we illustrate in Figure 6.5 below. We create a grid on a rectangular domain in two-space and apply a function or functions to each of the points in the grid to determine a two-
dimensional array of points in three-space. This figure illustrates the fundamental principal for surfaces that are given by a simple function of two variables; it shows a coarse grid on the domain (only a 6x6 grid for a function surface so you may see the underlying grid) and the relationship of the function’s value to the surface. Those points are used to determine rectangles in three-space that can be displayed with standard OpenGL functions. Each rectangle is actually displayed as two triangles so that we can display objects that are guaranteed to be planar. The display in the figure uses standard lighting and flat shading with a good deal of specularity to show the shape of the surface, but we will explore many presentation options for creating the display. The gridded surfaces we create in this way are only approximations of the real surfaces, of course, and special cases of functions such as points of discontinuity must be considered separately.

Figure 6.5: mapping a domain rectangle to a surface rectangle

5. Mathematical functions

If we consider a function of two variables, \( z=f(x,y) \), acting on a contiguous region of real two-space, then the set of points \((x,y,f(x,y))\) forms a surface in real three-space. This project explores such surfaces through processes that are described briefly in the figure above.

The goal of the project is to allow a student to see the fundamental principles of surfaces by creating a rectangular domain in X-Y space, evaluating the function at a regular grid of points in that domain, and creating and displaying small rectangles on the surface that correspond to a small rectangle in the underlying grid. This is not quite so simple, however, because the rectangle in the surface may not be planar. We solve that problem by dividing the surface rectangle into two triangles, each of which is planar.

The first step in the project is to create a single view of a surface. The challenges are to create the view environment and to understand what is meant by the surface triangles and rectangles, and how they are generated. We suggest two-sided surfaces with different colors above and below, so the student can clearly see how the view goes from one side to the other when the surface is rotated. This will also allow the student to distinguish the two sides when some other phenomena, such as surfaces that show their underside at the edge of the domain. The figure below shows such a surface with a yellow color and with three lights — red, green, and blue, evenly spaced around the space — that shows how this can look. This makes a good first project, and a later project can add the ability to rotate the surface in space. This can use keyboard or mouse rotation controls and is a good introduction to event-driven programming with callbacks.

The code to implement this display uses simple functions to map array indices to domain values and uses an array to hold the function values at each grid point. It includes declaring the array, defining the simple functions, loading the array, and rendering the surface. Rendering the surface
involves a straightforward computation of the normal to a triangle as the cross product of two edge vectors, each of which is computed as the difference between two triangle vertices. Other code to handle interactions, materials, lights, and the like is omitted.

```
// Parameters of the surface grid; NxM grid needs XSIZE = N+1, YSIZE = M+1
#define XSIZE 100
#define YSIZE XSIZE
#define MINX -6.0
#define MAXX 6.0
#define MINY -6.0
#define MAXY 6.0

static GLfloat vertices[XSIZE][YSIZE];

// functions for X and Y values for array indices i and j respectively
GLfloat XX(int i) {
 return (MINX+((MAXX-MINX)/(float)(XSIZE-1))*(float)(i));
}

GLfloat YY(int j) {
 return (MINY+((MAXY-MINY)/(float)(YSIZE-1))*(float)(j));
}

...

for (i=0; i<XSIZE; i++)
 for (j=0; j<YSIZE; j++) {
 x = XX(i);
 y = YY(j);
 vertices[i][j] = 0.3*cos(x*x+y*y+t); break;
 }

// actually draw the surface */
for (i=0; i<XSIZE-1; i++)
 for (j=0; j<YSIZE-1; j++) {
 // first triangle in the quad, front face
 glBegin(GL_POLYGON);
 vec1[0] = XX(i+1)-XX(i);
 vec1[1] = YY(j)-YY(j);
 vec1[2] = vertices[i+1][j]-vertices[i][j];
 vec2[0] = XX(i+1)-XX(i+1);
 vec2[1] = YY(j+1)-YY(j);
 vec2[2] = vertices[i+1][j+1]-vertices[i+1][j];
 glNormal3fv(triNormal); // hack together the normal vector...
 glVertex3f(XX(i), YY(j), vertices[i][j]);
 glVertex3f(XX(i+1), YY(j), vertices[i+1][j]);
 glVertex3f(XX(i), YY(j+1), vertices[i][j+1]);
 glEnd();

 // second triangle in the quad, front face
 glBegin(GL_POLYGON);
 ... // similar to above
 glNormal3fv(triNormal);
 glVertex3f(XX(i), YY(j), vertices[i][j]);
 glVertex3f(XX(i+1), YY(j+1), vertices[i+1][j+1]);
 glVertex3f(XX(i), YY(j+1), vertices[i][j+1]);
 }
```
Note that the function above includes a parameter $t$ that can be incremented to provide the surface animation described in Figure 6.6 below. The display is very simple because the goal of the project is to have the student understand the shape of the function surface.

Figure 6.6: an example of a function surface display

In order to have a good set of functions to work with, we suggest that the instructor give the students a small number of functions whose shape is well understood. However, there are a number of sources of functions. We encourage you to have your students look at their courses, including courses in physics or chemistry, or in references such as the CRC tables of mathematical functions for curious and interesting formulas that they do not immediately understand, with a goal of having their images help them with this understanding.

To avoid having to change the code and recompile when the student wants to look at a different function, we suggest having the student create a menu of surfaces and defining the project to include menu selection for the function. Some interesting functions to consider for this are:

1. $z = c \times (x^3 - 3x^2y^2)$
2. $z = c \times (x^4/a^4 - y^4/b^4)$
3. $z = (a^4x^2 + b^4y^2) / (x^2+y^2)$
4. $z = c\cos(2a\times x\times y)$
5. $z = c\cos(2a\times x\times a\times y)$
6. $z = c\log(a\times x^2 + b\times y^2)$

In this project it is fairly easy to pose some questions for students about the meaning of what they see, particularly if the instructor has chosen a good set of functions that have various kinds of discontinuities within a usual domain. Note that function 3 includes an essential singularity at the origin, so students will be faced with having to interpret this surface’s inaccuracies.

Later development of this project can be used either to introduce animation or after some animation has been covered. These developments can consider not only one single surface but a one-parameter family of surfaces. The parameter’s values can be stepped along by the idle callback function to allow the student to work with a more complex set of surfaces and in particular to see how the value of the function parameter affects the shape of the surface. This animation can be combined with rotation and even clipping controls so that the student can move the surface around as it is animating, though desktop systems do not seem to have enough speed to do this easily. Animations such as this are very motivating to students, so you are encouraged to include them.
whenever possible. (Unfortunately, we cannot include an example of an animation in this chapter, but the sample source code, animSurf.c, does provide a surface animation that you can compile and demonstrate to your students.)

This version of the project not only allows students to use menu and keyboard controls for function selection and world rotation; it also allows them to see the difference between the speeds of different kinds of systems and graphics cards. This may or may not be a good thing, depending on how good your labs are and how competitive your students are! However, if it fits the overall goals of your program, then some speed comparisons can be a good thing, and this can be expanded to compare how quickly different students’ programs execute.

6. Surfaces for special functions

Functions that are given by formulas in closed form are almost always analytic at almost all points in the domain. Special cases such as zero denominators or undefined transcendental functions usually disturb that analytic nature only at discrete points. However, there are other kinds of functions that exhibit more unusual behavior. One such kind of function is everywhere continuous but nowhere differentiable. Computer graphics can allow students to experiment with such functions and get a better understanding of their behavior.

As an example of a function of a single variable that is everywhere continuous but nowhere differentiable, consider the Weierstrass function defined by the convergent infinite series

\[ f(x) = \sum_{i=1}^{\infty} \sin(x\cdot2^i)/2^i \]

over all positive integers. This can easily be extended to a function of two variables with the same property by defining \( F(x, y) = f(x) \cdot f(y) \), and the surface would be useful for the student to see. For computational purposes, however, it is probably better (for speed purposes) to use an algebraic function instead of the transcendental sine function, so we have developed an example that uses the function \( x \cdot (1-x) \) instead of \( \sin(x) \). This kind of example has been called a blancmange function (after a traditional British holiday pudding whose surface is extremely wrinkled) and the surface for this example is shown in the figure below, both at modest and high resolutions.

The computer modeling for this is straightforward, with the array \( \text{vertices}[][] \) now created through the use of the blancmange() function instead of the function in the last example.

```c
// Calculate the points of the surface on the grid
for (i=0; i<XSIZE; i++)
 for (j=0; j<YSIZE; j++) {
 x = XX(i); y = YY(j);
 vertices[i][j] = blancmange(x,y,ITER);
 }
...

float blancmange(float x, float y, int n)
{
 float retVal, multiplier;
 int i;

 retVal = 0.0;
 multiplier = 0.5;
 for (i=0; i<n; i++) {
 multiplier = multiplier * 2.0;
 retVal = retVal + zigzag(x*multiplier,y*multiplier)/multiplier;
 }
```
float zigzag(float x, float y)
{
    float smallx, smally;
    int intx, inty;

    smallx = fabs(x); intx = (int)smallx;
    smally = fabs(y); inty = (int)smally;
    smallx = smallx - intx; // move x and y between 0 and 1
    smally = smally - inty;
    smallx = smallx * (1.0 - smallx); // maximum if value was 1/2
    smally = smally * (1.0 - smally); // minimum if value was 0 or 1
    return (4.0*smallx*smally); // scale to height 1
}

The surface is presented in Figure 6.7 just as in the previous example, but in addition to the rotation control there is also an iterate control that allows the user to take finer and finer approximations to the surface up to the limit of the raster display.

![Figure 6.7: (a) the blancmange surface, (b) zoomed in with more iterations](image)

7. Electrostatic potential function

The electrostatic potential \( P(x,y) \) at a given point \((x,y)\) in a plane that contains several point charges \(Q_i\) is given by Coulomb’s law:

\[
P(x,y) = \sum Q_i \frac{1}{\sqrt{(x-x_i)^2+(y-y_i)^2}}
\]

where each charge \(Q_i\) is positioned at point \((x_i,y_i)\). This function can readily be presented through a surface plot using standard graphics techniques as described above. This is a real-valued function of two real variables defined on the real plane, so the only issue is defining the domain on which the function is to be graphed and the grid on the domain. There is one problem with the function, however — it has singularities at the points where the point charges lie. The sample code with this example avoids the problem by adding a small amount to the distance between a point in the plane and each point charge. You can see this easily in the code below:

```c
#define MAXCHARGES 3
typedef struct { float charge, xpos, ypos; } charges;
charges Q[MAXCHARGES] = { { 5.0, 3.0, 1.0},
```
{ -5.0, 1.0, 4.0},
{ -10.0 ,2.0, 2.0} 

float coulSurf(float x, float y)
{
    float retVal, dist;
    int i;
    
    retVal = 0.0;
    for (i=0; i<MAXCHARGES; i++) {
        dist=sqrt((x-Q[i].xpos)*(x-Q[i].xpos)+(y-Q[i].ypos)*(y-Q[i].ypos)+0.1);
        retVal += Q[i].charge/dist;
    }
    retVal = retVal / 6.0; // scale in vertical direction
    return (retVal);
}

The example produces the result shown in Figure 6.8 below, with a standard lighting model and
standard material definitions, including a set of coordinate axes to show the position of the domain
in the plane. The same example can use several other presentation techniques such as pseudocolor,
as shown in the earlier discussion of visual communication.

![Coulombic surface from three point charges](image)

Figure 6.8: the coulombic surface from three point charges (one positive, two negative) in a plane

Once you have interactive controls in your programs, you can select a charge (using either a menu
or a mouse selection) and can experiment with this surface by moving the charged point around the
plane, by changing the amount of charge at the point, or by adding or deleting point charges. This
can make an interesting example for interaction.

8. Interacting waves

There are many places in physics where important topics are modeled in terms of wave
phenomena. It is useful to visualize behavior of waves, but single wave functions are very simple
to model and display. It is more interesting to consider the behavior of multiple wave functions
acting simultaneously, giving rise to different kinds of interaction phenomena. We might consider
wavefronts that travel in parallel, or wavefronts that travel circularly from a given points. The
basic modeling for these wave simulations treats the combined wave as a function that is the sum
of the two basic wave functions.
Modeling the interactive waves, then, operates in exactly the same way as the function surfaces above. You pick an appropriate domain, divide the domain into a grid, compute the value of the function at each point on the grid, and display each of the grid rectangles as two triangles. The code for the train and circular wave functions shown in Figure 6.9 below is:

```c
// some sample circular and train wave functions
#ifdef CIRCULAR
#define f1(x,y) 0.2*cos(sqrt((3.0*(x-3.14))*(3.0*(x-3.14))+(3.0*y)*(3.0*y)+t))
#define f2(x,y) 0.5*cos(sqrt((4.0*(x+1.57))*(4.0*(x+1.57))+(4.0*y)*(4.0*y)+t))
#endif

#ifdef TRAIN
#define f1(x,y) 0.1*sin(3.0*x+2.0*y+t)
#define f2(x,y) 0.2*sin(2.0*x+3.0*y+t)
#endif
```

(a) (b)

Figure 6.9: (a) two wave trains intersecting at a shallow angle, (b) two circular waves whose origins are offset by $3\pi/2$

These figures are presented as animations with the `idle()` function updating the parameter $t$ in the definition of the wave functions. This provides the student with a picture of the changes in the waveforms as they move along, something that no static wave simulation can hope to provide. The faster the computer, of course, the faster the wave will move, and if the wave motion is too fast one can always reduce the step in $t$ in the idle event handler shown below.

```c
void animate(void) {
 t += 0.7;
 glutPostRedisplay();
}
```

The images in the figure provide examples of these interactions where the amplitudes and frequencies of the waves vary and the wave propagation parameters are different. Students may want to examine questions about the behavior of waves; two frequencies that are very nearly the same lead to beat phenomena, for example. This would lead to interactive projects extensions of this approach, allowing students to vary the different parameters of the waves through menus, keystrokes, or other techniques. In addition to this simple two-wave problems, it is possible to model waves in the open ocean by adding up a number of simple waveforms of different directions, different frequencies, and different amplitudes. So this area is a rich source of questions that students can examine visually.
Projects that represent more complicated functions

9. Implicit surfaces

There are many places where one finds a real-valued function of three variables. As one example, consider the Coulomb’s law case in the previous project. This law operates in three space as well as two space — the potential at any point is the sum over all the charged particles of the charge divided by the distance from the point to the particle. Other examples include gravitational forces and the density of material in the universe. Note that the function may be known from theoretical sources, may be inferred from experimental data, or may even be only known numerically through interpolation of sample values in a spatial volume. We focus on the function with a known mathematical expression because that is easiest to program, but the surface-finding process we describe here is very important in many scientific areas.

The difference between the 3-space situation and the 2-space situation is significant, though. We cannot display the graph of a function of three variables, because that graph only lives in 4-space. Thus we must look for other ways to examine the behavior of these functions. A standard technique for this problem is to identify where the function has a constant value, often called an implicit surface. Creating implicit surfaces, or giving a user a way to identify the shape of these surfaces, is an important tool in understanding these functions. The critical question in this examination is to find those points in 3-space for which the function has a particular value.

One technique is to create an approximation to the actual implicit surface by creating a grid of points in the space and asking ourselves whether the function takes on the value we seek within each of the regions defined by the grid. If the function is (or may be assumed to be) continuous it is easy enough to answer that question; simply calculate the function’s value at each of the eight vertices of the region and see whether the function’s value is larger than the critical value at some vertices and smaller at others. If this is the case, the intermediate value theorem from calculus tells us that the function must pass through the critical value somewhere in the region.

Once we know that the function takes on the desired value in the region, we can take two approaches to the problem. The first, and easiest, is simply to identify the region by drawing something there. In the figure below, we draw a simple sphere in the region and use standard light and material properties to give shape to the spheres. (The function is \( f(x, y, z) = x*y*z \), and for any given value \( c \) the shape of the surface \( x*y*z=c \) is basically hyperbolic.) The basic code for this includes functions to identify the point in the domain that corresponds to the indices in the grid, and the code to scan the 3D grid and draw a sphere in each grid space the surface goes through.

```c
GLfloat XX(int i) {
 return (MINX+((MAXX-MINX)/(float)(XSIZE-1))*(float)(i));
}

GLfloat YY(int i) {
 return (MINY+((MAXY-MINY)/(float)(YSIZE-1))*(float)(i));
}

GLfloat ZZ(int i) {
 return (MINZ+((MAXZ-MINZ)/(float)(ZSIZE-1))*(float)(i));
}

// Identify grid points where the value of the function equals the constant
rad = 0.7*(MAXX-MINX)/(float)XSIZE;
for (i=0; i<XSIZE; i++)
```

6/10/00
for (j=0; j<YSIZE; j++)
    for ( k=0; k<ZSIZE; k++ ) {
        x = XX(i); x1 = XX(i+1);
        y = YY(j); y1 = YY(j+1);
        z = ZZ(k); z1 = ZZ(k+1);
        p1 = f( x, y, z);
        p2 = f( x, y, z1);
        p3 = f(x1, y, z1);
        p4 = f(x1, y, z);
        p5 = f( x,y1, z);
        p6 = f( x,y1,z1);
        p7 = f(x1,y1,z1);
        p8 = f(x1,y1, z);
        if ( ( (p1-C) * (p2-C)<0.0 ) || ( (p2-C) * (p3-C)<0.0 ) ||
            ( (p3-C) * (p4-C)<0.0 ) || ( (p1-C) * (p4-C)<0.0 ) ||
            ( (p1-C) * (p5-C)<0.0 ) || ( (p2-C) * (p6-C)<0.0 ) ||
            ( (p3-C) * (p7-C)<0.0 ) || ( (p4-C) * (p8-C)<0.0 ) ||
            ( (p5-C) * (p6-C)<0.0 ) || ( (p6-C) * (p7-C)<0.0 ) ||
            ( (p7-C) * (p8-C)<0.0 ) || ( (p5-C) * (p8-C)<0.0 ) ) {
            mySphere(x,y,z,rad);
        }
    }

This works fairly well, because the smoothness of the spheres allows us to see the shape of the surface as shown in Figure 6.10 below. A second and more difficult process is to find all the points on the edges of the region where the function takes the critical value and use them as the vertices of a polygon, and then draw the resulting polygon. This would give better results, but the techniques used to identify the geometry of the polygon make this beyond the scope of an introductory course.

Figure 6.10: an implicit surface approximation that uses spheres to indicate surface location

10. Cross-sections of volumes

Another technique for seeing the behavior of a function of three variables is to give the user a way to see the function values by displaying the values in a planar cross-section of the region. We could take the cross-section as a 2-dimensional space and present the graph of the function as a 3D surface, but this would be confusing; each cross-section would have its own 3-D graph whose
behavior is would be confusing in the 3D region. Instead, we use the 2D technique of associating colors with numerical values and drawing the cross-section in colors that reflect the values of the function. The figure below shows an example of three cross-sections, one parallel to each coordinate plane through the origin, for the function $\sin(x*y*z)$.

The code for this process is shown below, where we only show the function being presented, the function that defines the cutting plane with constant $X$ (the function functionX) and the surface rendering for that plane. The operations for the other two cutting planes are essentially identical to this.

```cpp
// the function of three variables
float f(float x, float y, float z) {
 return sin(x*y*z);
}

// function for value of x with global constants AX, BX, CX, DX
// that determine the plane
float functionX(float y, float z) {
 return (-DX-BX*y-CX*z)/AX;
}

void surfaceX(void)
{
 // define a point data type and general variables
 point3 myColor;
 int i, j;
 float x, y, z, c;

 // Calculate the points of the surface on the grid
 for (i=0; i<XSIZE; i++)
 for (j=0; j<YSIZE; j++) {
 vertices[i][j][1]=y=MINY+(MAXY-MINY)*((float)j/(float)(YSIZE-1));
 vertices[i][j][2]=z=MINZ+(MAXZ-MINZ)*((float)i/(float)(ZSIZE-1));
 vertices[i][j][0]=x=functionX(y,z);
 }

 // draw the surface with quads because surface is planar
 for (i=0; i<XSIZE-1; i++)
 for (j=0; j<YSIZE-1; j++) // for each quad in the domain
 // compute "average" point in the quad
 x = (vertices[i][j][0] + vertices[i+1][j][0] +
 vertices[i][j+1][0] + vertices[i+1][j+1][0])/4.0;
 y = (vertices[i][j][1] + vertices[i+1][j][1] +
 vertices[i][j+1][1] + vertices[i+1][j+1][1])/4.0;
 z = (vertices[i][j][2] + vertices[i+1][j][2] +
 vertices[i][j+1][2] + vertices[i+1][j+1][2])/4.0;
 c = f(x,y,z); // compute function at the "average" point
 getColor(c, &r, &g, &b);
 glColor3f(r, g, b); // color determined by value of function
 if ((i==0)&&(j==0)) glColor3f(1.0,0.0,0.0);
 glBegin(GL_POLYGON);
 glVertex3fv(vertices[i][j]); //
 glVertex3fv(vertices[i+1][j]); //
 glVertex3fv(vertices[i+1][j+1]); //
 glVertex3fv(vertices[i][j+1]); //
 glEnd();
 }
}
The display itself is shown in Figure 6.11 below; note how the cross-sections match at the lines where they meet, and how the function changes depending on how large the value of the fixed x, y, or z is for the plane. The display includes user-controlled rotations so the user can see the figure from any angle, and also includes keyboard control to move each of the cutting planes forward and backward to examine the behavior of the function throughout the space.

![Figure 6.11: cross-sections of a function’s values](image)

Usually we use a standard smooth color ramp so the smoothness of the function can be seen, but we can use an exceptional color for a single value (or very narrow range of values) so that unique value can be seen in a sort of contour band. The color ramp function is not included here because it is one of the standard ramps discussed in the visual communication section.

11. Vector displays

A different problem considers displaying functions of two variables with two-variable range, where you must display this essentially four-dimensional information to your audience. Two examples of this are vector-valued functions in 2-space, or complex-valued functions of a single complex variable. In particular, Figure 6.12 below presents two examples: a system of two first-order differential equations of two variables (left) and a complex-valued function of a complex variable (right). The domain is the standard rectangular region of two-dimensional space, and we have taken the approach of encoding the range in two parts based on considering each value as a vector with a length and a direction. We encode the length as pseudocolor with the uniform color ramp as described above, and the direction as a fixed-length vector in the appropriate direction.

The leftmost figure is based on the complex-valued function \(f(z) = z^3 + 12z + 12 \) for complex numbers \(z \). This function is evaluated at each point of a grid, and the result is a complex number. This number, like every complex number, can be viewed as a vector and as such has a magnitude and a direction. We set the color at the vertex by the magnitude of the vector and draw a vector at the grid point with the direction of the vector, allowing the user to see both these properties of the function simultaneously.
Code for this process is listed below, with the color ramp treated a little differently than in other examples: the \texttt{calcEven(\ldots)} function is assumed to take a value between 0 and 1 and return a value in a global variable \texttt{myColor[3]} instead of as three real numbers. The colors are also calculated based on triangles instead of quads because this was created by adapting a surface plotting function; quads would have worked equally well.

```c
// Calculate the points of the surface on the grid and log min and max
for ( i=0; i<XSIZE; i++ )
  for ( j=0; j<YSIZE; j++ ) {
    x = 0.5*(XX(i)+XX(i+1));
    y = 0.5*(YY(j)+YY(j+1));
    getVector(x, y, &u, &v);
    vectors[i][j][0] = u; vectors[i][j][1] = v;
    length[i][j] = getLength(u,v);
    if (length[i][j] > YMAX) YMAX = length[i][j];
    if (length[i][j] < YMIN) YMIN = length[i][j];
  }
...

float getLength(float a, float b)
{ return (sqrt(a*a+b*b)); }  

efloat getVector(float x, float y, float *u, float *v) {
  // w = z^3+12z+12; value is complex number w
  *u = x*x*x - 3.0*x*y*y +12.0*x + 12.0;
  *v = 3.0*x*x*y - y*y*y +12.0*y;
}
evoid surface(void) {
  int i, j;
  float yavg, len, x, y;

  YRANGE = YMAX - YMIN;
  // draw the vector and the surface
  for ( i=0; i<XSIZE-1; i++ )
    for ( j=0; j<YSIZE-1; j++ ) {  

Another use of this approach is to present the system of two differential equations

\[ \begin{align*}
  x' &= y^2 - 1 \\
  y' &= x^2 - 1
\end{align*} \]

Here the vector \( \langle x', y' \rangle \) is the result of the differential equation process, and we can present the vector directly using the magnitude and direction components as described above. This was the source of the right-hand display in the figure above.

12. Parametric curves

A curve may be defined mathematically by any function (usually a continuous function) from real one-space into real three-space. The function may be expressed through a function or through parametric equations. Function curves look like standard graphs, while parametric curves can have loops or other complex behavior. It is also possible to have curves defined by other processes, such as differential equations. A simple example of curves defined by functions is given by a standard helix:

\[ \begin{align*}
  x &= a \sin(t) \\
  y &= a \cos(t) \\
  z &= t
\end{align*} \]

Other curves can be more interesting and complex. Some can be derived by taking the parametric surfaces described above and making one of the \( u \) or \( v \) variables a constant; we will not write any
of these explicitly. Others may come from different sources. A couple of interesting examples are
the rotating sine wave:
\[ x = \sin(a^t)\cos(b^t) \]
\[ y = \sin(a^t)\sin(b^t) \]
\[ z = c^t/(2\pi) \]
or the toroidal spiral:
\[ x = (a\sin(c^t)+b)\cos(t) \]
\[ y = (a\sin(c^t)+b)\sin(t) \]
\[ z = a\cos(c^t) \]

The modeling for this is done by dividing a real interval into a number of subintervals and
calculating the point on the curve corresponding to each division point. These are connected in
sequence by line segments. This is shown in the code fragment below:

```c
void spiral(void)
{
 int i;
 float a=2.0, b=3.0, c=18.0, t;

 glBegin(GL_LINE_STRIP);
 for (i=0, t=0.0; i<=1000; i++) {
 glVertex3f((a*sin(c*t)+b)*cos(t),(a*sin(c*t)+b)*sin(t),a*cos(c*t));
 t = t + .00628318; // 2*PI/1000
 }
 glEnd();
}
```

This example above is also shown in Figure 6.13 below. Here the visual communication is quite
simple, with the main question being to show the shape of the curve. However, to let the user get
the best feel for the shape, it is useful to use keyboard-controlled rotations to allow the user to see
it from any viewpoint. Curves such as these are sufficiently complex that students should feel
some satisfaction in seeing the results of their programs.

![Figure 6.13: The toroidal spiral curve](image)

13. Parametric surfaces

In the function surface projects above, the student was asked to start with a grid in the X-Y domain
and compute a value of Z for each point in the grid. The resulting points (x,y,z) were then used to
determine rectangles in real three-space that are each graphed as a pair of triangles. The grid need
not be so directly involved in the surface, however. In a parametric surface project, we start with a grid in parameter space (which we will call U-V space). For each point (u,v) in the grid, three functions will give three real values for each of these points; these values are the x-, y-, and z-coordinates of the points that are to be graphed. So the difference between function surfaces and parametric surfaces is relatively small from the programming point of view.

The sample we present for parametric surfaces is the (3,4)-torus. This is a closed, genus-1 surface with triangular cross section that twists 4/3 times as it goes around the torus. This is an interesting shape, because it has a Möbius-like property that if you put your finger on one side of the triangle cross-section and hold it there, you will eventually return to the same place on the surface. The domain for the parameter space is \([-2\pi, 2\pi]\) in both the u and v directions. Modeling the surface depends first on considering the domain as having three parts in one direction and many parts in the other direction. The three parts are mapped to the sides of a triangle, and the triangle is slowly rotated as you proceed along the many-sided direction, making a total twist of 480 degrees by the time it gets to the end. In practice, the space bounded by two of these triangles cannot readily be managed with three quadrilaterals, but needs to be subdivided a number of times to handle the twist in the space appropriately. Code for the modeling includes several parts: the definition of the parametric functions that define the torus, and the functions to manage the various stages of the actual surface definition as described above.

```c
//torus; note that this includes a parameter t for animating the surface
#define RNGRAD 4.0 // radius of torus ring
#define TUBRAD 2.0 // radius of torus tube
#define X(u,v) (RNGRAD+TUBRAD*cos(1.3333333*u+v+t))*cos(u)
#define Y(u,v) (RNGRAD+TUBRAD*cos(1.3333333*u+v+t))*sin(u)
#define Z(u,v) TUBRAD*sin(1.3333333*u+v+t)

float umin=-3.14159, umax=3.14159, vmin=-3.14159, vmax=3.14159;

// functions to return u and v values for indices i and j respectively
GLfloat UU(int i) {
 return (umin+((umax-umin)/(float)(usteps-1))*(float)(i));}
GLfloat VV(int j) {
 return (vmin+((vmax-vmin)/(float)(vsteps-1))*(float)(j));}

void doSurface(void)
{
 int i, j;
 float u, v;
 GLfloat yellow[]= {1.0, 1.0, 0.0, 1.0};
 GLfloat mat_shininess[]={ 30.0};

 // Calculate the points of the surface boundaries on the grid
 for (i=0; i<usteps; i++)
 for (j=0; j<vsteps; j++)
 {
 u = UU(i); v = VV(j);
 surface[i][j].x = X(u,v);
 surface[i][j].y = Y(u,v);
 surface[i][j].z = Z(u,v);
 }

 // actually draw the surface
 for (i=0; i<usteps-1; i++) // along torus -- larger
 for (j=0; j<vsteps-1; j++) { // around torus -- smaller
 glMaterialfv(GL_FRONT, GL_AMBIENT, yellow);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, yellow);
 }
```
glMaterialfv(GL_BACK, GL_AMBIENT, yellow);
glMaterialfv(GL_BACK, GL_DIFFUSE, yellow);
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);
doQuad(20,1,surface[i][j],surface[i+1][j],
        surface[i][j+1], surface[i+1][j+1]);
}

// Divide quad into m strips vertically and images each separately.
void doQuad(int n, int m, surfpoint p0, surfpoint p1, surfpoint p2, surfpoint p3)
{
    int i;
surfpoint A, B, C, D; // A and B are the top points of each separate
                        // strip; C and D are the bottom points.

    for (i=0; i<m; i++) {
        A.x = (p0.x*(float)(m-i) + p1.x*(float)i)/(float)m;
        A.y = (p0.y*(float)(m-i) + p1.y*(float)i)/(float)m;
        A.z = (p0.z*(float)(m-i) + p1.z*(float)i)/(float)m;
        B.x = (p0.x*(float)(m-i-1) + p1.x*(float)(i+1))/(float)m;
        B.y = (p0.y*(float)(m-i-1) + p1.y*(float)(i+1))/(float)m;
        B.z = (p0.z*(float)(m-i-1) + p1.z*(float)(i+1))/(float)m;

        C.x = (p2.x*(float)(m-i) + p3.x*(float)i)/(float)m;
        C.y = (p2.y*(float)(m-i) + p3.y*(float)i)/(float)m;
        C.z = (p2.z*(float)(m-i) + p3.z*(float)i)/(float)m;
        D.x = (p2.x*(float)(m-i-1) + p3.x*(float)(i+1))/(float)m;
        D.y = (p2.y*(float)(m-i-1) + p3.y*(float)(i+1))/(float)m;
        D.z = (p2.z*(float)(m-i-1) + p3.z*(float)(i+1))/(float)m;
        doStrip(n, A, B, C, D);
    }
}

/* Now we have one vertical strip that we must subdivide into n pieces,
each of which will be two triangles. We actually create a nx2 array
of surfpoints, and then divide each quad going down the array into two
triangles, each of which is *emitted* with its own function call.
*/
void doStrip(int n, surfpoint p0, surfpoint p1, surfpoint p2, surfpoint p3)
{
    int i, j;
surfpoint A, B, buffer[3];

    for (i=0; i<=n; i++) {
        A.x = (p0.x*(float)(n-i) + p2.x*(float)i)/(float)n;
        A.y = (p0.y*(float)(n-i) + p2.y*(float)i)/(float)n;
        A.z = (p0.z*(float)(n-i) + p2.z*(float)i)/(float)n;
        B.x = (p1.x*(float)(n-i) + p3.x*(float)i)/(float)n;
        B.y = (p1.y*(float)(n-i) + p3.y*(float)i)/(float)n;
        B.z = (p1.z*(float)(n-i) + p3.z*(float)i)/(float)n;
        theStrip[i][0] = A;
        theStrip[i][1] = B;
    }
    // now manipulate the strip to send out the triangles one at a time
    // to the actual output function, using a rolling buffer for points.
    buffer[0] = theStrip[0][0];
    buffer[1] = theStrip[0][1];
for (i=1; i<=n; i++)
    for (j=0; j<2; j++) {
        buffer[2] = theStrip[i][j];
        emit(buffer);
        buffer[0] = buffer[1];
        buffer[1] = buffer[2];
    }
}

// Handle one triangle as an array of three surfpoints.
void emit( surfpoint *buffer ) {
    surfpoint Normal, diff1, diff2;
    diff1.x = buffer[1].x - buffer[0].x;
    diff1.y = buffer[1].y - buffer[0].y;
    diff1.z = buffer[1].z - buffer[0].z;
    diff2.x = buffer[2].x - buffer[1].x;
    diff2.y = buffer[2].y - buffer[1].y;
    diff2.z = buffer[2].z - buffer[1].z;
    Normal.x = diff1.y*diff2.z - diff2.y*diff1.z;
    Normal.y = diff1.z*diff2.x - diff1.x*diff2.z;
    Normal.z = diff1.x*diff2.y - diff1.y*diff2.x;
    glBegin(GL_POLYGON);
        glNormal3f(Normal.x,Normal.y,Normal.z);
        glVertex3f(buffer[0].x,buffer[0].y,buffer[0].z);
        glVertex3f(buffer[1].x,buffer[1].y,buffer[1].z);
        glVertex3f(buffer[2].x,buffer[2].y,buffer[2].z);
    glEnd();
}

Figure 6.14: a parametric surface

The display of this surface in Figure 6.14 focuses on the surface shapes, which can be quite complex from certain viewpoints. Thus it is important to allow the student to have full rotation.
control in all three axes via the keyboard or the mouse. In addition, the surface rotates slowly in
the plane of the figure, emphasizing that the display is dynamic. Code for the animation is quite
routine and is omitted.

The differences between function surfaces and parametric surfaces can be immense. Function
surfaces are always single-sheet: they always look like a horizontal sheet that has been distorted
upwards and downwards, but never wraps around on itself. Parametric surfaces can be much
more complex. For example, a sphere can be seen as a parametric surface whose coordinates are
computed from latitude and longitude, a two-dimensional region; a torus can be seen as a
parametric surface whose coordinates are computed from the angular displacement around the torus
and the angular displacement in the torus ring, another pair of dimensions. The figure above
shows an example of a parametric surface that encloses a volume, surely something a function
surface could never do.

Many simpler surfaces can be created using parametric definitions, and these make good student
projects. It is easy to define a simple torus in this way, for example; the functions are
\[
\begin{align*}
x(u,v) &= (A + B \cdot \cos(v)) \cdot \cos(u); \\
y(u,v) &= (A + B \cdot \cos(v)) \cdot \sin(u); \\
z(u,v) &= B \cdot \sin(v)
\end{align*}
\]
for real constants A and B for values of u and v between 0 and 2*π, where A is the radius of the torus body and B is the
radius of the torus ring. Compare these equations with the ones used to define the figure above
and note the similarity. Note also how defining a grid on the (u,v) domain corresponds to the
definition of the torus in the GLUT torus model. Other examples may be considered as well; a
couple of these that you may wish to experiment with are:

- **Helicoid:**
  \[
  \begin{align*}
x(u,v) &= a \cdot u \cdot \cos(v), \\
y(u,v) &= b \cdot u \cdot \sin(v); \\
z(u,v) &= c \cdot v
\end{align*}
  \]
  for real constants a, b, c

- **Conical spiral:**
  \[
  \begin{align*}
x(u,v) &= a \cdot (1 - (v/2 \cdot \pi)) \cdot \cos(n \cdot v) \cdot (1 + \cos(u)) + c \cdot \cos(n \cdot v); \\
y(u,v) &= a \cdot (1 - (v/2 \cdot \pi)) \cdot \sin(n \cdot v) \cdot (1 + \cos(u)) + c \cdot \sin(n \cdot v); \\
z(u,v) &= (b \cdot v/2 \cdot \pi) + a \cdot (1 - (v/(2 \cdot \pi)) \cdot \sin(u))
\end{align*}
  \]
  for real constants a, b, c and integer n

This area of surface exploration offers some very interesting opportunities for advanced studies in
functions. For example, the parametric surface may not exist in 3-space but in higher-dimensional
space, and then may be projected down into 3-space to be seen. For example, there may be four or
more functions of u and v representing four or more dimensions. Familiar surfaces such as Klein
bottles may be viewed this way, and it can be interesting to look at options in projections to 3-
space as another way for the user to control the view.

**Projects that simulate a scientific process**

14. **Gas laws**

It is fairly simple to program a simulation of randomly-moving molecules in an enclosed space.
This simulation models the behavior of gases in a container and can allow a student to consider the
relationship between pressure and volume or pressure and temperature in the standard gas laws.
These laws say that when temperature is held constant, pressure and volume vary inversely. The
simulation can display the principles involved and can allow a user to query the system for the
analogs of temperature and pressure, getting back data that can be used in a statistical test of the
law above.
The simulation is straightforward: the student defines an initial space and creates a large number of individual points in that space. The idle callback gives each point a random motion with a known average distance (simulating a fixed temperature) in a random direction. The space can be enlarged or shrunk. If the volume is shrunk, any points that might have been outside the new smaller space are moved back into the space; if the volume is expanded, points are allowed to move freely into the new space. If the motion would take the point outside the space, that motion is reflected back into the space and a “hit” is recorded to simulate pressure in the space. This count serves to model the pressure. So the student can use interactive controls to change the volume and observe the number of counts, testing the hypothesis that the number of counts increases inversely with the surface area. The student could also change the average distance of a random motion, modeling temperature changes, and test the hypothesis that the number of counts increases directly with the distance (that is, the temperature). Information on the volume, collision count, or distance traveled can be retrieved at any point by a simple keystroke. In fact, the small number of molecules in this simulation give a very large variability of the product of surface area and collisions, so the student will need to do some sample statistics to test the hypothesis.

The computational model for this process is straightforward. The points are positioned at random initial locations, and the idle callback handles motion of each particle in turn by generating a random offset that changes the particle’s position. One particle has its motion tracked and a record of its recent positions drawn to illustrate how the particles travel; the resulting track (the yellow track in the figure below) is a very good example of a random walk. The code for the trail for one point, for the idle callback, and for tallying the hits is:

```c
// code for the trail of one point
glBegin(GL_POINTS);
 for (i=0; i<=NMOLS; i++) {
 glVertex3fv(mols[i]);
 if (i == 0) {
 if (npoints < TRAILSIZE) npoints++;
 for (j=TRAILSIZE-1; j>0; j--)
 for (k=0; k<3; k++)
 trail[j][k]=trail[j-1][k];
 for (k=0; k<3; k++){
 trail[0][k] = mols[i][k];
 }
 }
 }
}

// the idle() callback
void animate(void)
{
 int i,j,sign;
 bounce = 0;
 for(i=0; i<NMOLS; i++) {
 for (j=0; j<3; j++) {
 sign = -1+2*(rand()%2);
 mols[i][j] +=
 (float)sign*distance*((float)(rand()%GRAN)/(float)(GRAN));
 if (mols[i][j] > bound)
 mols[i][j] = 2.0*bound - mols[i][j]; bounce++;
 if (mols[i][j] < -bound)
 mols[i][j] = 2.0*(-bound) - mols[i][j]; bounce++;
 }
 }
 glutPostRedisplay();
```
// tally the hits on the surface of the volume
void tally(void)
{
    float pressure, volume;

    pressure = (float)bounce/(bound*bound); // hits per unit area
    volume   = bound*bound*bound; // dimension cubed

    printf("pressure %f, volume %f, product %f\n",
           pressure, volume, pressure*volume);
}

A display of the volume and retrieved information is shown in Figure 6.15 below. This project would naturally use simple color and no lights; it should not even need to use hidden surfaces.

![Figure 6.15: Displaying the gas as particles in the fixed space, with simulation printouts included](image)

Figure 6.15: Displaying the gas as particles in the fixed space, with simulation printouts included

The display operates by providing a very rapid animation of the particles, so the user gets the strong impression of molecules moving quickly within the space. It is possible to move the view around with the keyboard, and every time the user presses the ‘t’ key the program produces a tally such as that shown at the bottom of the figure. This the visual communication takes the form of an actual experiment that is probed at any time to read the current state. Of course, there are some possible problems with the simulation; if the user expands the space quickly, it may take some time for the particles to move out to the boundaries so the tallies are likely to be low for a while, and if
the user contracts the space too quickly, the particles are seen outside the box for a short period until they can be brought back inside.

One may properly ask why this simulation does not demonstrate the relationship between pressure and temperature in the gas laws. This is primarily because the simulation does not include collisions between molecules. Adding this capability would require so much collision testing that it would slow down the simulation and take away the real-time nature of the display.

15. Diffusion through a semipermeable membrane

One of the common processes in biological processes involves molecules transporting across semipermeable membranes. These membranes will allow molecules to pass at varying rates, depending on many factors. One of these factors is the molecular weight, where lighter molecules will pass through a membrane more easily than heavier molecules. (A more realistic factor is the physical dimension of the molecule, and this project can be re-phrased in terms of molecule size instead of weight).

This project involves processes very much like the gas law simulation above, including random motion of the molecules (represented as points), tracing the recent motion of molecules via rolling arrays, and the inclusion of a tally function. However, this simulation adds a plane between two regions and simulates the behavior of a semipermeable membrane for molecules of two different weights (here called “light” and “heavy” without any attempt to match the behaviors with those of any real molecules and membranes).

The code we present for this concentrates on simulating the motion of the particles with special attention to the boundaries of the space and the nature of the membrane, all contained in the idle callback:

```c
void animate(void)
{
 #define HEAVYLEFT 0.8
 #define HEAVYRIGHT 0.9
 #define LIGHTLEFT 0.3
 #define LIGHTRIGHT 0.1
 #define LEFT 0
 #define RIGHT 1
 int i,sign,whichside;

 for(i=0; i<NHEAVY; i++) {
 whichside = LEFT; else whichside = RIGHT;
 sign = rand()%2; if (sign == 0) sign = -1;
 heavy[i][0] += sign*(float)(rand()%GRAN)/(float)(16*GRAN);
 sign = rand()%2; if (sign == 0) sign = -1;
 heavy[i][1] += sign*(float)(rand()%GRAN)/(float)(16*GRAN);
 sign = rand()%2; if (sign == 0) sign = -1;
 heavy[i][2] += sign*(float)(rand()%GRAN)/(float)(16*GRAN);
 if (heavy[i][0] > 1.0) heavy[i][0] = 2.0 - heavy[i][0];
 if (heavy[i][0] < 0.0) heavy[i][0] = -heavy[i][0];
 if (whichside==RIGHT)&&(heavy[i][0] < 0.0)) // cross right to left?
 if ((float)(rand()%GRAN)/(float)(GRAN) >= HEAVYLEFT)
 heavy[i][0] = -heavy[i][0];
 if (whichside==LEFT)&&(heavy[i][0] > 0.0)) // cross left to right?
 if ((float)(rand()%GRAN)/(float)(GRAN) >= HEAVYLEFT)
 heavy[i][0] = -heavy[i][0];
 if (heavy[i][0] > 1.0) heavy[i][0] = 2.0 - heavy[i][0];
 if (heavy[i][0] <-1.0) heavy[i][0] =-2.0 - heavy[i][0];
```
if (heavy[i][1] > 1.0) heavy[i][1] = 2.0 - heavy[i][1];
if (heavy[i][1] < 0.0) heavy[i][1] = -heavy[i][1];
if (heavy[i][2] > 1.0) heavy[i][2] = 2.0 - heavy[i][2];
if (heavy[i][2] < 0.0) heavy[i][2] = -heavy[i][2];
}
for(i=0; i<NLIGHT; i++) {
    if (light[i][0] < 0.0) whichside = LEFT; else whichside = RIGHT;
sign = rand()%2; if (sign == 0) sign = -1;
light[i][0] += sign*(float)(rand()%GRAN)/(float)(16*GRAN);
sign = rand()%2; if (sign == 0) sign = -1;
light[i][1] += sign*(float)(rand()%GRAN)/(float)(16*GRAN);
sign = rand()%2; if (sign == 0) sign = -1;
light[i][2] += sign*(float)(rand()%GRAN)/(float)(16*GRAN);
if (light[i][0] > 1.0) light[i][0] = 2.0 - light[i][0];
if (whichside == RIGHT) && (light[i][0] < 0.0)
    if ( (float)(rand()%GRAN)/(float)(GRAN) >= LIGHTLEFT)
        light[i][0] = -light[i][0];
    if (whichside == LEFT) && (light[i][0] > 0.0)
      if ( (float)(rand()%GRAN)/(float)(GRAN) >= LIGHTRIGHT)
        light[i][0] = -light[i][0];
if (light[i][0] < -1.0) light[i][0] = -2.0 - light[i][0];
if (light[i][1] > 1.0) light[i][1] = 2.0 - light[i][1];
if (light[i][1] < 0.0) light[i][1] = -light[i][1];
if (light[i][2] > 1.0) light[i][2] = 2.0 - light[i][2];
if (light[i][2] < 0.0) light[i][2] = -light[i][2];
}
glutPostRedisplay();

This display, shown in Figure 6.16, has with pretty effective animation of the particles and allows
the user to rotate the simulation region to view the behavior from any direction. The program
presents the tally results in a separate text-output region which is included with the figure at left
below. The tallies were taken at one-minute intervals to illustrate that the system settles into a fairly
consistent steady-state behavior over time, certainly something that one would want in a
simulation. The membrane is presented with partial transparency so that the user gets a sense of
seeing into the whole space when viewing the simulation with arbitrary rotations.

Figure 6.16: display of the diffusion simulation, directly across the membrane at left (including
data output from the simulation), and in a view oriented to show the membrane itself at right.
Projects that illustrate dynamic systems

16. The Lorenz attractor

Not all curves are given by simple algebraic equations. An excellent example of a curve given by a differential equation is given below; this describes a complex phenomenon having no closed-form solution is given by the system of differential equations:

\[
\begin{align*}
\frac{dx}{dt} &= s \times (y - x) \\
\frac{dy}{dt} &= r \times x - y - x \times z \\
\frac{dz}{dt} &= x \times y - b \times z
\end{align*}
\]

for constants \( s, r, \) and \( b \). These are the Lorenz equations and the curve they define, called the Lorenz attractor, is often described in discussions of strange attractors. Under certain circumstances (in particular, \( s=10, r=28, \) and \( b=8/3, \) used in the example in Figure 6.17 below) chaotic behavior occurs, and the set of curves given by the differential equations (with parameter \( t \)) are very interesting, but to present these curves well you need high-quality numerical integration. This may require tools you do not have in your programming environment, and the example that is included here only uses difference equation approximations.

This process is modeled by replacing the differential equations above by difference equations. This can be a questionable decision if we want to provide a fully accurate result, but we do not assume that the computer graphics student will necessarily have yet learned how to code numerical integration techniques. For now, we can only suggest that the user might want to reduce the size of the step in the animate() function below and iterate that several times in the course of making one step. Code for the simple difference equation approach is given below, followed by a figure illustrating how the curve looks.

```c
float sigma = 10.0, r = 28.0, b = 2.66667;

void animate(void) {
 point3 delta;
 int i;
 float x, y, z;

 x = location[NumberSoFar][0];
 y = location[NumberSoFar][1];
 z = location[NumberSoFar][2];
 delta[0] = sigma*(y-x);
 delta[1] = r*x - y - x*x;
 delta[2] = x*y - b*z;
 for (i=0; i<3; i++)
 location[NumberSoFar+1][i] = location[NumberSoFar][i]+0.01*delta[i];
 NumberSoFar++;
 glutPostRedisplay();
}
```

The display presents the growing set of points so the user can watch the shape of the curve evolve. Because this curve lives in an interesting region of space, it is important that the user be able to move the curve around and look at its regions, so the program should allow the user to do this with either keyboard or mouse control.
17. The Sierpinski attractor

Sometimes an attractor is a more complex object than the curve of the Lorenz attractor. Let us consider a process in which some bounded space contains four designated points that are the vertices of a tetrahedron (regular or not), and let us put a large number of other points into that space. Now define a process in which for each non-designated point, a random designated point is chosen and the non-designated point is moved to the point precisely halfway between its original position and the position of the designated point. Apply that process repeatedly. It may not seem that any order would arise from the original chaos, but it does — and in fact there is a specific region of space into which each of the points tends, and from which it can never escape. This is called the Sierpinski attractor, and it is shown in Figure 6.18.

The Sierpinski attractor is also interesting because it can be defined in a totally different way. If we recursively define a tetrahedron to be displayed as a collection of four tetrahedra, each of half the height of the original tetrahedron, each touching all the others at precisely one point, and each having one of the vertices of the original tetrahedron, then the limit of this definition is the attractor as defined and presented above.
Some enhancements to the display

Stereo pairs

If you create a window that is twice as wide as it is high, and if you divide it into left and right viewports, you can display two images in the window simultaneously. If these two images are created with the same model and same center of view, but with two eye points that simulate the location of two eyes, then the images simulate those seen by a person’s two eyes. Finally, if the window is relatively small and the distance between the centers of the two viewports is reasonably close to the distance between a person’s eyes, then the viewer can probably resolve the two images into a single image and see a genuine 3D view. Such a view is shown in Figure 6.19 below: a pair of views of psilocybin.mol, one of the molecules included in these materials that has some 3D interest. None of these processes are difficult, so it would add some extra interest to include 3D viewing in the molecule display project or almost any other of these projects.

![Stereo pairs image](image_url)

Figure 6.19: A stereo pair that the viewer may be able to resolve.

The code below manages the two viewports and performs the display in each; the display portion is not presented in order to keep the code short and to focus on the dual-viewport approach. This creates two viewports, defines them to have different viewing projections, performs the same actual display operations (indicated by the ellipsis) on each, and then presents the completed display of both viewports at once to avoid the flicker of updating each separately.

```c
void display(void)
{
 // eye offset from center
 float offset = 1.0;

 // left-hand viewport
 glViewport(0,0,300,300);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(-offset, 0.0, ep, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
 ...

 // right-hand viewport
 glViewport(300,0,300,300);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
```
A more complex kind of display — Chromadepth™ display — depends on texture mapping and will be described later.

Credits:

A number of colleagues have helped with graphical concepts, with scientific principles, or with models of the scientific issues. We apologize in advance for those we may miss, but we want to thank Michael J. Bailey of the San Diego Supercomputer Center (SDSC) for many fruitful discussions across all of these topics, and with Kris Stewart of San Diego State University (SDSU), Angela Shiflet of Wofford College, Rozeanne Steckler and Kim Baldridge of SDSU, and Ian Littlewood of California State University Stanislaus for their contributions in one or more of these areas.

References:

• Zimmermann, Walter and Steve Cunningham, Visualization in Teaching and Learning Mathematics, MAA Notes Number 19, Mathematical Association of America, 1991
• Banchoff, Tom et al., “Student-Generated Software for Differential Geometry,” in Zimmermann and Cunningham, above, pp. 165-171
• von Seggern, David, CRC Standard Curves and Surfaces, CRC Press, 1993
• Textbook for multivariate calculus ...
• Textbook for differential geometry? ...
• Chromadepth glasses and other information are available from Chromatek Inc
  1246 Old Alpharetta Road
  Alpharetta, GA 30005
  888-669-8233
  http://www.chromatek.com/
Appendix I: PDB file format

The national Protein Data Bank (PDB) file format is extremely complex and contains much more information than we can ever hope to use for student projects. We will extract the information we need for simple molecular display from the reference document on this file format to present here. From the chemistry point of view, the student might be encouraged to look at the longer file description to see how much information is recorded in creating a full record of a molecule.

There are two kinds of records in a PDB file that are critical to us: atom location records and bond description records. These specify the atoms in the molecule and the bonds between these atoms. By reading these records we can fill in the information in the internal data structures that hold the information needed to generate the display. The information given here on the atom location (ATOM) and bond description (CONECT) records is from the reference. There is another kind of record that describes atoms, with the keyword HETATM, but we leave this description to the full PDB format manual in the references.

ATOM records: The ATOM records present the atomic coordinates for standard residues, in angstroms. They also present the occupancy and temperature factor for each atom. The element symbol is always present on each ATOM record.

**Record Format:**

<table>
<thead>
<tr>
<th>COLUMNS</th>
<th>DATA TYPE</th>
<th>FIELD</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Record name</td>
<td>&quot;ATOM &quot;</td>
<td>Atom serial number.</td>
</tr>
<tr>
<td>7 - 11</td>
<td>Integer</td>
<td>serial</td>
<td>Atom name.</td>
</tr>
<tr>
<td>13 - 16</td>
<td>Atom</td>
<td>name</td>
<td>Alternate location indicator.</td>
</tr>
<tr>
<td>17</td>
<td>Character</td>
<td>resName</td>
<td>Residue name.</td>
</tr>
<tr>
<td>22</td>
<td>Character</td>
<td>chainID</td>
<td>Chain identifier.</td>
</tr>
<tr>
<td>23 - 26</td>
<td>Integer</td>
<td>resSeq</td>
<td>Residue sequence number.</td>
</tr>
<tr>
<td>27</td>
<td>AChar</td>
<td>iCode</td>
<td>Code for insertion of residues.</td>
</tr>
<tr>
<td>31 - 38</td>
<td>Real(8.3)</td>
<td>x</td>
<td>Orthogonal coordinates for X in Angstroms.</td>
</tr>
<tr>
<td>39 - 46</td>
<td>Real(8.3)</td>
<td>y</td>
<td>Orthogonal coordinates for Y in Angstroms.</td>
</tr>
<tr>
<td>47 - 54</td>
<td>Real(8.3)</td>
<td>z</td>
<td>Orthogonal coordinates for Z in Angstroms.</td>
</tr>
<tr>
<td>55 - 60</td>
<td>Real(6.2)</td>
<td>occupancy</td>
<td>Occupancy.</td>
</tr>
<tr>
<td>61 - 66</td>
<td>Real(6.2)</td>
<td>tempFactor</td>
<td>Temperature factor.</td>
</tr>
<tr>
<td>73 - 76</td>
<td>LString(4)</td>
<td>segID</td>
<td>Segment identifier, left-justified.</td>
</tr>
<tr>
<td>77 - 78</td>
<td>LString(2)</td>
<td>element</td>
<td>Element symbol, right-justified.</td>
</tr>
<tr>
<td>79 - 80</td>
<td>LString(2)</td>
<td>charge</td>
<td>Charge on the atom.</td>
</tr>
</tbody>
</table>

The "Atom name" field can be complex, because there are other ways to give names than the standard atomic names. In the PDB file examples provided with this set of projects, we have been careful to avoid names that differ from the standard names in the periodic table, but that means that we have not been able to use all the PDB files from, say, the chemical data bank. If your chemistry program wants you to use a particular molecule as an example, but that example’s data file uses other formats for atom names in its file, you will need to modify the readPDBfile() function of these examples.

Example:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1234567890123456789012345678901234567890123456789012345678901234567890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>1 C</td>
<td>1</td>
<td>-2.053</td>
<td>2.955</td>
<td>3.329</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>2 C</td>
<td>1</td>
<td>-1.206</td>
<td>3.293</td>
<td>2.266</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>3 C</td>
<td>1</td>
<td>-0.945</td>
<td>2.371</td>
<td>1.249</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>4 C</td>
<td>1</td>
<td>-1.540</td>
<td>1.127</td>
<td>1.395</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>5 C</td>
<td>1</td>
<td>-2.680</td>
<td>1.705</td>
<td>3.426</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
ATOM      6  C           1      -2.381   0.773   2.433  1.00  0.00
ATOM      7  O           1      -3.560   1.422   4.419  1.00  0.00
ATOM      8  O           1      -2.963  -0.435   2.208  1.00  0.00
ATOM      9  C           1      -1.455  -0.012   0.432  1.00  0.00
ATOM     10  C           1      -1.293   0.575  -0.967  1.00  0.00
ATOM     11  C           1      -0.022   1.456  -0.953  1.00  0.00
ATOM     12  C           1      -2.790  -0.688   0.814  1.00  0.00
ATOM     13  C           1      -4.014  -0.102   0.081  1.00  0.00
ATOM     14  C           1      -2.532   1.317  -1.376  1.00  0.00
ATOM     15  C           1      -3.744   1.008  -0.897  1.00  0.00
ATOM     16  O           1      -4.929   0.387   1.031  1.00  0.00
ATOM     17  C           1       0.232  -0.877   0.763  1.00  0.00
ATOM     18  C           1       1.068   0.077   0.599  1.00  0.00
ATOM     19  N           1       1.127   0.599  -0.684  1.00  0.00
ATOM     20  O           1       1.241   1.228  -0.914  1.00  0.00
ATOM     21  C           1       2.664   1.980  -0.132  1.00  0.00
ATOM     22  C           1       3.214   0.453  -0.915  1.00  0.00
ATOM     23  H           1       2.440   1.715  -1.915  1.00  0.00
ATOM     24  H           1       3.106  -0.281  -0.915  1.00  0.00
ATOM     25  H           1       2.686   3.072   4.086  1.00  0.00
ATOM     26  H           1       4.288  -2.207  -0.915  1.00  0.00
ATOM     27  H           1       4.278  -0.974  -0.915  1.00  0.00
ATOM     28  H           1       2.578   1.980  -0.132  1.00  0.00
ATOM     29  H           1       1.670   0.665   1.425  1.00  0.00
ATOM     30  H           1       1.848  -1.848  -0.915  1.00  0.00
ATOM     31  H           1       1.098  -1.098  -0.915  1.00  0.00
ATOM     32  H           1       1.011  -1.011  -0.915  1.00  0.00
ATOM     33  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     34  H           1       1.928  -0.783   0.887  1.00  0.00
ATOM     35  H           1       2.223   4.961  -0.915  1.00  0.00
ATOM     36  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     37  H           1       1.166  -0.251  -1.707  1.00  0.00
ATOM     38  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     39  H           1       0.111   1.848  -1.991  1.00  0.00
ATOM     40  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     41  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     42  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     43  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     44  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     45  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     46  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     47  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     48  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     49  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     50  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     51  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     52  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     53  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     54  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     55  H           1       1.848  -1.991  -0.915  1.00  0.00
ATOM     56  H           1       1.170   0.665   1.425  1.00  0.00
ATOM     57  H           1       1.848  -1.991  -0.915  1.00  0.00

CONECT records: The CONECT records specify connectivity between atoms for which coordinates are supplied. The connectivity is described using the atom serial number as found in the entry.

Record Format:

<table>
<thead>
<tr>
<th>COLUMNS</th>
<th>DATA TYPE</th>
<th>FIELD</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Record name</td>
<td>&quot;CONECT&quot;</td>
<td>Atom serial number</td>
</tr>
<tr>
<td>7 - 11</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of bonded atom</td>
</tr>
<tr>
<td>12 - 16</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of bonded atom</td>
</tr>
<tr>
<td>17 - 21</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of bonded atom</td>
</tr>
<tr>
<td>22 - 26</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of bonded atom</td>
</tr>
<tr>
<td>27 - 31</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of bonded atom</td>
</tr>
<tr>
<td>32 - 36</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of hydrogen bonded atom</td>
</tr>
<tr>
<td>37 - 41</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of hydrogen bonded atom</td>
</tr>
<tr>
<td>42 - 46</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of salt bridged atom</td>
</tr>
<tr>
<td>47 - 51</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of hydrogen bonded atom</td>
</tr>
<tr>
<td>52 - 56</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of hydrogen bonded atom</td>
</tr>
<tr>
<td>57 - 61</td>
<td>Integer</td>
<td>serial</td>
<td>Serial number of salt bridged atom</td>
</tr>
</tbody>
</table>

Example:
As we noted at the beginning of this Appendix, PDB files can be extremely complex, and most of the examples we have found have been fairly large. The file below is among the simplest PDB files we’ve seen, and describes the adrenalin molecule. This is among the materials provided as adrenaline.pdb.

```
HEADER NONAME 08-Apr-99
TITLE NONE 2
AUTHOR Frank Oellien NONE 3
REVDAT 1 08-Apr-99 0 NONE 4
ATOM 1 C 0 -0.017 1.378 0.010 0.00 0.00 C+0
ATOM 2 C 0 0.002 -0.004 0.002 0.00 0.00 C+0
ATOM 3 C 0 1.211 -0.680 -0.013 0.00 0.00 C+0
ATOM 4 C 0 2.405 0.035 -0.021 0.00 0.00 C+0
ATOM 5 C 0 2.379 1.420 -0.013 0.00 0.00 C+0
ATOM 6 C 0 1.169 2.089 0.002 0.00 0.00 C+0
ATOM 7 O 0 3.594 -0.625 -0.035 0.00 0.00 O+0
ATOM 8 O 0 1.232 -2.040 -0.020 0.00 0.00 O+0
ATOM 9 C 0 -1.333 2.112 0.020 0.00 0.00 C+0
ATOM 10 O 0 -1.177 3.360 0.700 0.00 0.00 O+0
ATOM 11 C 0 -1.785 2.368 -1.419 0.00 0.00 C+0
ATOM 12 N 0 -3.068 3.084 -1.409 0.00 0.00 N+0
ATOM 13 C 0 -3.443 3.297 -2.813 0.00 0.00 C+0
ATOM 14 H 0 -0.926 -0.557 0.008 0.00 0.00 H+0
ATOM 15 H 0 3.304 1.978 -0.019 0.00 0.00 H+0
ATOM 16 H 0 1.150 3.169 0.008 0.00 0.00 H+0
ATOM 17 H 0 3.830 -0.755 -0.964 0.00 0.00 H+0
ATOM 18 H 0 -2.081 1.509 0.534 0.00 0.00 H+0
ATOM 19 H 0 -0.508 3.861 0.214 0.00 0.00 H+0
ATOM 20 H 0 -1.037 2.972 -1.933 0.00 0.00 H+0
ATOM 21 H 0 -1.904 1.417 -1.938 0.00 0.00 H+0
ATOM 22 H 0 -3.750 2.451 -1.020 0.00 0.00 H+0
ATOM 23 H 0 -3.541 2.334 -3.314 0.00 0.00 H+0
ATOM 24 H 0 -4.394 3.828 -2.859 0.00 0.00 H+0
ATOM 25 H 0 -2.674 3.888 -3.309 0.00 0.00 H+0
ATOM 26 H 0 -1.227 2.315 -0.947 0.00 0.00 H+0
ATOM 27 H 0 -2.081 1.509 0.534 0.00 0.00 H+0
ATOM 28 H 0 -0.508 3.861 0.214 0.00 0.00 H+0
ATOM 29 H 0 -1.037 2.972 -1.933 0.00 0.00 H+0
ATOM 30 H 0 -1.904 1.417 -1.938 0.00 0.00 H+0
ATOM 31 H 0 -3.750 2.451 -1.020 0.00 0.00 H+0
ATOM 32 H 0 -3.541 2.334 -3.314 0.00 0.00 H+0
ATOM 33 H 0 -4.394 3.828 -2.859 0.00 0.00 H+0
ATOM 34 H 0 -2.674 3.888 -3.309 0.00 0.00 H+0
CONECT 1 2 6 9 0 NONE 31
CONECT 2 1 3 14 0 NONE 32
CONECT 3 2 4 8 0 NONE 33
CONECT 4 3 5 7 0 NONE 34
CONECT 5 4 6 15 0 NONE 35
CONECT 6 5 1 16 0 NONE 36
CONECT 7 4 17 0 0 NONE 37
CONECT 8 3 18 0 0 NONE 38
CONECT 9 1 10 11 19 NONE 39
CONECT 10 9 20 0 0 NONE 40
CONECT 11 9 12 21 22 NONE 41
CONECT 12 11 13 23 0 NONE 42
CONECT 13 12 24 25 26 NONE 43
END NONE 44
```

Figure: Example of a simple molecule file in PDB format

**Reference:**
Appendix II: CTL file format

The structure of the CT file is straightforward. The file is segmented into several parts, including a header block, the counts line, the atom block, the bond block, and other information. The header block is the first three lines of the file and include the name of the molecule (line 1); the user’s name, program, date, and other information (line 2); and comments (line 3). The next line of the file is the counts line and contains the number of molecules and the number of bonds as the first two entries. The next set of lines is the atom block that describes the properties of individual atoms in the molecule; each contains the X-, Y-, and Z-coordinate and the chemical symbol for an individual atom. The next set of lines is the bonds block that describes the properties of individual bonds in the molecule; each line contains the number (starting with 1) of the two atoms making up the bond and an indication of whether the bond is single, double, triple, etc. After these lines are more lines with additional descriptions of the molecule that we will not use for this project. An example of a simple CTfile-format file for a molecule (from the reference) is given in Figure A-1 below.

Obviously there are many pieces of information in the file that are of interest to the chemist, and in fact this is an extremely simple example of a file. But for our project we are only interested in the geometry of the molecule, so the additional information in the file must be skipped when the file is read.

```
L-Alanine (13C)
GSMACCS-II10169115362D 1 0.00366 0.00000 0
6 5 0 0 1 0 3 V2000
-0.6622 0.5342 0.0000 C 0 0 2 0 0 0
0.6220 0.6220 0.3000 0.0000 C 0 0 0 0 0 0
-0.7207 2.0817 0.0000 C 1 0 0 0 0 0
-1.8622 -0.3695 0.0000 N 0 3 0 0 0 0
0.6220 -1.8037 0.0000 O 0 0 0 0 0 0
1.9464 0.4244 0.0000 O 0 5 0 0 0 0
1 2 1 0 0 0
1 3 1 1 0 0
1 4 1 0 0 0
2 5 2 0 0 0
2 6 1 0 0 0
M CHG 2 4 1 6 -1
M ISO 1 3 13
M END
```

Figure: Example of a simple molecule file in CTfile format

Reference: