Memorize base 10 equivalents:
2^x for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 16, and (approximately) 20, 30, 31 and 32
16^x for x = 0, 1, 2, 3, 4
Prefixes “kilo-”, “mega-”, “giga-” and “tera-” for data sizes and rates

Unsigned, Variable Length Integer Data:
Convert

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>2<sup>x</sup></th>
<th>16<sup>x</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>4096</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>65536</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.05x10<sup>6</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>1.07x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>31</td>
<td>>2x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>>4x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>1.10x10<sup>12</sup></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Arithmetic
Add and subtract in decimal, hexadecimal, and binary.

Unsigned, Fixed Length Integer Data:
Convert

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>2<sup>x</sup></th>
<th>16<sup>x</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>4096</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>65536</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>1.05x10<sup>6</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>1.07x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>31</td>
<td>>2x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>>4x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>1.10x10<sup>12</sup></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Arithmetic
Add and subtract in decimal, hexadecimal, and binary.
Detect unsigned overflow.

Signed (2’s complement) Fixed Length Integer Data:
Convert

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>2<sup>x</sup></th>
<th>16<sup>x</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>4096</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>65536</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>65536</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>1.05x10<sup>6</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>1.07x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>31</td>
<td>>2x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>>4x10<sup>9</sup></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>1.10x10<sup>12</sup></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Arithmetic
Add and subtract in decimal, hexadecimal, and binary.
Form the negative (2’s complement) of numbers expressed in binary and hexadecimal.
Sign-extend a 2’s complement number to a longer length.
Detect signed and unsigned overflow.

Character Data
Convert ASCII to integer format and vice-versa.
Know layout of ASCII table: Control characters, printable characters, digits, uppercase letters, lowercase letters.
CR, LF, or CR-LF?

Logical Data
Bit operations NOT, AND, OR, EOR.