Math 2300
Section 4.3, 4.4

Theorem 4.3.5 Unique Factorization of Integers Theorem (Fundamental Theorem of Arithmetic)

Given any integer $n>1$, there exist a positive integer k, distinct prime numbers $p_{1}, p_{2}, \ldots, p_{k}$, and positive integers $e_{1}, e_{2}, \ldots, e_{k}$ such that

$$
n=p_{1}^{e 1} p_{2}^{e 2} p_{3}^{e 3} \ldots p_{k}^{e k}
$$

and any other expression for n as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

Theorem 4.4.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers q and r such that $\boldsymbol{n}=\boldsymbol{d q}+r$ and $0 \leq r<d$.

Definition of div and mod
Given an integer n and a positive integer d,
$\mathbf{n} \operatorname{div} \mathbf{d}=$ the integer quotient obtained when n is divided by d, and
$\mathbf{n} \boldsymbol{m o d} \mathbf{d}=$ the nonnegative integer remainder obtained when n is divided by d.
Symbolically, if n and d are integers and $d>0$, then $n \operatorname{div} d=q$ and $n \bmod d=r \Leftrightarrow n=d q+r$ where q and r are integers and $0 \leq r<d$.

