Math 2300, Spring 2018

Proofs using the Principle of Strong Mathematical Induction

Principle of Strong Mathematical Induction (Epp, p. 268)

Let $\mathrm{P}(\mathrm{n})$ be a property that is defined for integers n , and let a and b be fixed integers with $\mathrm{a} \leq \mathrm{b}$. Suppose the following two statements are true:

1. $P(a), P(a+1), \ldots$, and $P(b)$ are all true. (basis step)
2. For any integer $k \geq b$, if $P(i)$ is true for all integers i from a through k, then $P(k+1)$ is true. (inductive step)

Then the statement
for all integers $n \geq a, P(n)$ is true.
(The supposition that $P(i)$ is true for all integers i from a through k is called the inductive hypothesis. Another way to state the inductive hypothesis is to say that $P(a), P(a+1), \ldots, P(k)$ are all true.)

Dr. Martin's 5 step method to prove $\mathrm{P}(\mathrm{n})$ for all integers $n \geq a$.

1. Base Cases: $P(a), P(a+1), \ldots, P(b)$

If it is an equation be sure to check both sides separately.
2. Write down the Induction Hypothesis: $\mathrm{n}=\mathrm{i}$

Where k is a particular, but arbitrary integer greater than or equal to b.
Let $k \in \mathbb{Z} \ni k \geq b$ and suppose $P(i) \forall i \in \mathbb{Z} \ni a \leq i \leq k$
3. Write down what needs to be proved: $\mathrm{n}=\mathrm{k}+1$

We must show that $\mathbf{P}(\mathrm{k}+1)$

4. Show $\mathrm{P}(\mathrm{a})$ through $\mathrm{P}(\mathrm{k})$ implies $\mathrm{P}(\mathrm{k}+1)$ by clear and convincing argument, usually starts:

Consider P(k+1)

5. Conclusion

By PSMI P(n) $\forall n \in \mathbb{Z} \ni n \geq a$

