Second Order Linear Recurrence Relations with Constant Coefficients

Five steps:

0 . Check the recurrence is SOLRRCC

A second-order linear recurrence relation with constant coefficients is a recurrence relation of the form:

$$
a_{k}=A a_{k-1}+B a_{k-2}+f(k)
$$

for all integers $k \geq$ some fixed integer, where A and B are fixed real numbers.

1. Find the Particular Solution p_{n}

We consider three cases:

- Constant: example $f(k)=-1$; guess $p_{n}=c$ and solve for c
- Linear: example $f(k)=k$; guess $p_{n}=a+b n$ and solve for a and b
- Exponential: example $f(k)=6^{k}$; guess $p_{n}=a 6^{n}$ and solve for a

2. Find the homogeneous solution q_{n}

Let q_{n} be the solution to the homogenous part of the recurrence

$$
a_{k}=A a_{k-1}+B a_{k-2}
$$

for all integers $\mathrm{k} \geq$ some fixed integer, where A and B are fixed real numbers.
3. Write $\mathrm{a}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}$
4. Solve for C and D, using the initial conditions.

Two linear equations in two variables using linear algebra.
5. Write down the final formula, specifying where it holds (e.g. $\forall n \in \mathbb{Z} \ni n \geq 0$).

