Second Order Linear Homogeneous Recurrence Relations with Constant Coefficients (Epp section 5.8)

Five steps:
0. Check the recurrence is SOLHRRCC

A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

$$
a_{k}=A a_{k-1}+B a_{k-2}
$$

for all integers $\mathrm{k} \geq$ some fixed integer, where A and B are fixed real numbers with $B \neq 0$.

1. Find the Characteristic Polynomial

Let A and B be real numbers. A recurrence relation of the form

$$
a_{k}=A a_{k-1}+B a_{k-2} \text { for all integers } k \geq 2
$$

is satisfied by the sequence

$$
1, t, t^{2}, t^{3}, \ldots, t^{n}, \ldots,
$$

where t is a nonzero real number, if, and only if, t satisfies the equation

$$
t^{2}-A t-B=0 \text { (this is the characteristic polynomial) }
$$

2. Find the roots of the Characteristic Polynomial

Factor or use quadratic formula

3. Use Theorems to find the formula

Distinct Roots
If the characteristic equation

$$
t^{2}-A t-B=0
$$

has two distinct roots r and s, then $a_{0}, a_{1}, a_{2}, \ldots$ is given by the explicit formula

$$
a_{n}=C r^{n}+D s^{n},
$$

where C and D are the numbers whose values are determined by the values a_{0} and a_{1}.

Repeated Roots

If the characteristic equation

$$
t^{2}-A t-B=0
$$

has single (real) root r, then $a_{0}, a_{1}, a_{2}, \ldots$ is given by the explicit formula

$$
a_{n}=C r^{n}+D n r^{n},
$$

where C and D are the numbers whose values are determined by the values a_{0} and a_{1}.

4. Solve for C and D, using the initial conditions.

Two linear equations in two variables using linear algebra.
5. Write down the final formula, specifying where it holds (e.g. $\forall \boldsymbol{n} \in \mathbb{Z} \ni \boldsymbol{n} \geq \mathbf{0}$).

