Second Order Linear Homogeneous Recurrence Relations with Constant Coefficients (Epp section 5.8)

Five steps:

0. Check the recurrence is SOLHRRCC

A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

$$a_k = Aa_{k-1} + Ba_{k-2}$$

for all integers $k \ge$ some fixed integer, where A and B are fixed real numbers with $B \ne 0$.

1. Find the Characteristic Polynomial

Let A and B be real numbers. A recurrence relation of the form $a_k = Aa_{k-1} + Ba_{k-2}$ for all integers $k \ge 2$ is satisfied by the sequence $1, t, t^2, t^3, \dots, t^n, \dots$, where t is a nonzero real number, if, and only if, t satisfies the equation $t^2 - At - B = 0$ (this is the characteristic polynomial)

2. Find the roots of the Characteristic Polynomial

Factor or use quadratic formula

3. Use Theorems to find the formula

Distinct Roots

If the characteristic equation $t^2 - At - B = 0$ has two distinct roots r and s, then $a_0, a_1, a_2, ...$ is given by the explicit formula

$$a_n = Cr^n + Ds^n,$$

where C and D are the numbers whose values are determined by the values a_0 and a_1 .

Repeated Roots

If the characteristic equation $t^2 - At - B = 0$ has single (real) root r, then $a_0, a_1, a_2, ...$ is given by the explicit formula $a_n = Cr^n + Dnr^n$,

where C and D are the numbers whose values are determined by the values a_0 and a_1 .

4. Solve for C and D, using the initial conditions.

Two linear equations in two variables using linear algebra.

5. Write down the final formula, specifying where it holds (e.g. $\forall n \in \mathbb{Z} \ \ni n \geq 0$).