Math 2300, Spring 2018

Proofs using the Principle of Mathematical Induction

Principle of Mathematical Induction (Epp, p. 246)

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Then the statement
for all integers $n \geq a, P(n)$
is true.

Dr. Martin's 5 step method to prove $\mathrm{P}(\mathrm{n})$ for all integers $n \geq n_{0}$.

1. Base Case: $\boldsymbol{P}\left(\boldsymbol{n}_{0}\right)$

If it is an equation be sure to check both sides separately.
2. Write down the Induction Hypothesis: $\mathrm{n}=\mathrm{k}$

Where k is a particular, but arbitrary integer greater than or equal to n_{0}
Let $k \in \mathbb{Z} \ni k \geq n_{0}$ and suppose $P(k)$
3. Write down what needs to be proved: $\mathrm{n}=\mathrm{k}+1$

We must show that $\mathbf{P}(\mathbf{k}+1)$
4. Show $P(k)$ implies $P(k+1)$ by clear and convincing argument, usually starts:

Consider P(k+1)

5. Conclusion

By PMI P(n) $\forall n \in \mathbb{Z} \ni n \geq \boldsymbol{n}_{\mathbf{0}}$

