More on Solving Recurrence Relations
 Math 2300, Spring 2018

Second Order Linear Recurrence Relations with Constant Coefficients

Theorem: Let p_{n} be ay particular solution to the recurrence relation $a_{k}=A a_{k-1}+B a_{k-2}+f(\mathrm{k})$, ignoring initial conditions. Let q_{n} be the general solution to the homogeneous recurrence a_{k} $=A a_{k-1}+B a_{k-2}$ again ignoring initial conditions. Then $a_{n}=p_{n}+q_{n}$ is the general solution to the recurrence relation $a_{k}=A a_{k-1}+B a_{k-2}+f(k)$, where the initial conditions determine the constants in q_{n}.

Generating Functions:

A generating function is, roughly, a polynomial that goes on forever:
$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots . .+a_{n} x^{n}+\ldots$.
Definition: The generating function of a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ is the expression $f(x)=a_{0}$ $+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots .$.
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \quad$ generates $1,1,1, \ldots$
$\frac{1}{1-a x}=1+a x+a^{2} x^{2}+a^{3} x^{3}+\ldots$ generates $1, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}, \ldots$
$\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\ldots$ generates $1,2,3,4, \ldots$
(The above theorem and definitions adapted from Discrete Mathematics with Graph Theory by Goodaire and Parmenter.)

Recursion Trees are often used for divide and conquer algorithms.
The Master Theorem gives bounds on recurrences:
The Master Theorem applies to recurrences of the following form:

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1$ and $b>1$ are constants and $f(n)$ is an asymptotically positive function.
There are 3 cases:

1. If $f(n)=\mathrm{O}\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ with $\mathrm{k} \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ with $\varepsilon>0$, and $f(n)$ satisfies the regularity condition, then $T(n)=\Theta(f(n))$. Regularity condition: $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n .

For examples of applying the Master Theorem
http://www.csanimated.com/animation.php?t=Master_theorem

