Math 2300, Spring 2011 - Discrete Structures Quiz 3 - Sample Problems

1. Solve the recurrence relation:

$$
a_{k}=3 a_{k-1}+6^{k}, k \geq 1 \text {, given } a_{0}=1 .
$$

2. Let $A=\{1,2,3\}$ and $B=\{x, y\}$.
a. List the elements of $A \times B$.
b. List the elements of the power set of A: $\mathscr{P}(A)$.
3. Let A, B, and C be sets. Prove that $(A \times B) \cup(A \times C) \subseteq A \times(B \cup C)$.
4. Let A, B, and C be sets. Use set identities to prove that $(A-B)-C=A-(B \cup C)$.
5. Assume that all sets are subsets of a universal set U and prove that for all sets A and B, if $A \subseteq B$, then $A \cap B^{c}=\varnothing$.
6. Let $A=\{1,2,3,4\}$, draw a directed graph of a relation on A that is:
a. Reflexive, but not symmetric and not transitive.
b. Symmetric and transitive, but no reflexive.
7. Let $A=\{2,3,5\}$ and $B=\{2,6,15\}$ and let R be the "divides" relation from A to B :

$$
\forall(x, y) \in A \times B, x R y \Leftrightarrow x \mid y
$$

a. Explicitly state which ordered pairs are in R.
b. Explicitly state which ordered pairs are in R^{-1}.
8. Let R be the relation defined on Z as follows:

$$
\forall m, n \in Z, m R n \Leftrightarrow 5 I(m-n)
$$

a. Prove that R is an equivalence relation.
b. List (no proof required) the distinct equivalence classes of R.
9. Consider the subset relation, \subseteq, on the set $\mathscr{P}(\{a, b, c\})$. That is for all U and V in $\mathscr{O}(\{a, b, c\})$:

$$
U \subseteq V \Leftrightarrow \forall x, x \in U \Rightarrow x \in V
$$

Draw the Hasse diagram for this relation.
10. How many integers from 1 through 100 must you pick to be sure of getting one that is divisible by 5 ?
11. a. Draw the complete graph on seven vertices, K_{7}.
b. Draw the bipartite graph $K_{3,4}$.
12. Does this graph (not shown - but this gives you an idea of a type of question) have and Euler Circuit? Why or why not? If not can you remove one edge to result in a subgraph with an Euler Circuit? (Specify which edge.) Label the vertices and describe the path that forms the circuit.

