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Abstract 

The dilemma of exploration versus exploitation in reinforcement learning problems has no 

single solution. There exist many algorithms whose approaches can achieve near optimal 

rewards however each of these approaches is vastly different from one another. The E-greedy 

algorithm reduces the issue of exploration to a simple probability where E3 explicitly explores 

by exploring when a state is unknown and when a non-optimal action exists in a particular state. 

R-Max’s  approach  is  to  implicitly  explore  all  states by assuming every action returns an optimal 

reward until it learns otherwise and REX, which is the most sophisticated, attempts to use an 

informed exploration model where objects and states are generalized so that even in previously 

unencountered states, with previously unperformed actions, an informed decision can be made 

as whether to explore or exploit, on the basis of its knowledge of previously known states and 

performed actions. Each of these algorithms demonstrates a different approach to the 

exploration versus exploitation dilemma where all perform near-optimally. 
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1. Introduction 

Reinforcement learning can be described as learning what to do in an unknown environment in 

order to maximize some numerical reward. Reinforcement learning problems typically consist 

of some learning agent, existing in an unknown environment that attempts to learn about its 

surroundings by performing various interactions with it. Each action performed by the agent in 

the environment grants the agent some numerical reward while also causing some aspect of 

the environment to change. The agent’s ultimate goal is to learn, through its various 

interactions, a way to achieve as maximum as possible a total numerical reward by performing 

actions within that environment. (Sutton & Barto, p. 2) 

At the initialization time of reinforcement learning problems the environment is unknown to 

the agent resulting in an agent's need to first learn about its environment by performing 

unknown actions, known as exploring. Performing actions is how the agent learns about the 

environment, its changes, and also the corresponding reward values for performing particular 

actions. After the agent has run for a particular amount of time it will have gained some 

approximate knowledge of the environment and the various rewards attributed to some 

actions which allow for the agent to begin actively attempting achieving a maximum as possible 

total reward. At the time an agent can begin to effectively exploit its knowledge there may still 

exist actions that have not been performed and therefore actions exist whose reward value is 

still unknown. This means that there is some possibility of an existing action, unknown to the 
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agent, whose reward is greater than the currently known rewards for that particular state 

meaning the agent is receiving non optimal rewards. 

The goal of the algorithms that will be examined is to achieve as near optimal a total reward as 

possible, an optimal total reward being the result of an agent performing only the most optimal 

actions that achieve the greatest possible maximum reward possible for a particular stochastic 

game, and acting in an unknown environment it is highly improbable that an agent will be able 

to collect an optimal reward without first becoming knowledgeable about its environment. This 

raises the dilemma of how long should an agent spend exploring its environment versus 

exploiting its knowledge. (Sutton & Barto, p. 2) At which point can an agent be considered 

knowledgeable enough about its environment to exploit its knowledge and how much 

exploration is required for this state to be reached? This paper will examine the E-greedy, E3, R-

Max, and REX reinforcement learning algorithms and their approaches at addressing this 

dilemma.  

2. Reinforcement Learning Problem 

A typical reinforcement learning problem will consist of some stochastic game and a learning 

agent. The learning agent plays, operates within, the stochastic game for a particular number of 

times in an attempt to perform more efficiently, optimally, with each subsequent game. (Sutton 

& Barto, p.3) 

2.1 Stochastic Modeling and Games 
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Stochastic modeling is the "use of probability to model real-world situations in which 

uncertainty is present." (Glynn, p. 1) Stochastic modeling is a tool used to reduce the many 

aspects of various situations to probabilities of possible outcomes. This way of modeling is a 

great tool for reinforcement learning as it allows for aspects of the real world to be accurately 

represented in a meaningful way so that learning algorithms may then be applied. 

 

Figure 1 Represents a simple coin toss stochastic game where there are two possible actions 
that can be performed from any particular state, either to quit the game and cause no more 
state transitions or flip the coin. H and T represent the outcome of a flip action where H is 
heads and T is tails. The nodes represent the current state, which depict the outcomes of all 
previous actions prior to arriving at that state. The connecting edges from a state represent an 
action taken, whether to flip the coin or to stop the game. NOTE: when the quit action is 
performed the game does not reach the successive state. 
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A stochastic game is a simulation of a stochastic model and is commonly comprised of a set of 

states, state spaces, and some probability attributed to each action within the state space to 

cause a state transition. (Glynn, p. 2) 

As an example, a state in the stochastic game Solitaire would be the current configuration of all 

of the cards on the playing area. The state space would then be every possible move, or action, 

a player could make in that particular state. It is important to note that as the game is played 

the state is expected to change after every move and as a result the set of all possible moves 

also changes. (Givan & Parr) This is one of the basic aspects of a stochastic game and why the 

exploration versus exploitation dilemma exists in reinforcement learning. Games with a great 

number of states, each with a great many actions, make it difficult for reinforcement learning 

algorithms to meaningfully learn about the possible states and explore the even greater 

amounts of possible actions. A comparison of the simple stochastic game of flipping coins to 

solitaire can be employed to demonstrate this concept. 

Think of a simple coin flipping game where an unbiased coin, where one side is heads and the 

other tails, is flipped at most three times and the player can choose to stop playing at any time. 

At the end of the game if the number of heads is greater than the number of tails, the player is 

given that amount of some reward, if tails is greater than the number of heads, the player loses 

that amount of some reward, and in the case of one head and one tails being flipped with the 

player deciding to stop the game, a reward of one is given. This simple coin toss game, 

represented by a tree in Figure 1, has a possible 14 states, 8 of which conclude the game, where 

only 6 provide the player with a state space with the possible actions of either flipping the coin 
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or stopping the game. Since the number of states is so few, even an inefficient implementation 

of a learning algorithm playing this game would be able to act optimally after only a few 

iterations of playing the game.  (Gimbert, p.13) 

The game solitaire however has a vast amount of states, as well as state spaces, as the possible 

configurations of the deck of 52 cards across the many zones on the playing area are 

exceedingly large. This game would require a lot more time for a learning algorithm to be able 

to act optimally in any one particular state. 

 

2.2 Agent 

An agent can be thought of as an abstract individual learning entity. The typical components of 

an agent consist of an environmental model, value function, reward function, and a policy. The 

implementation of an agent does not necessitate that all the listed components be present, 

even amongst the algorithms being examined this is not the case, just that this is a typical 

implementation. In most cases the agent can be thought of as the actual 'player' of the game. 

(Sutton & Barto, p.7) 

 

2.2.1 Model of Environment 

The model of environment is the agent's representation of its current working environment. 

This model is referenced by other functions to determine whether a state has previously been 
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visited, whether all actions have been explored, and whether an optimal action exists in this 

state. In the game of Solitaire an environmental model might be implemented to record each 

configuration of the playing area, the move made, and the new configuration of the playing 

area as a result of the move made. (Sutton & Barto, p. 8) 

             Value Function       Maximum Reward per State 

Step N                           

Step N+1                 

Figure 2 A simple stochastic model which has three states, {S, Sa, Sb}, and where each edge 
from those states represents a particular action with its corresponding reward value.The edges 
marked red represent a performed action at a particular step in time. The left two graphs 
demonstrate how an agent's value function might create a plan so as to recieve a higher reward 
across multiple states where the right two graphs demonstrate how an agent utlizing a local 
maximum reward method of obtaining rewards would behave on the same graph. 
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2.2.2 Value Function 

The value function utilizes the environment model to derive long term plans so as to maximize 

the agent's total reward. To clarify, the value function compares the rewards across possible 

future states by using the environmental model to determine the probability that any one 

particular state might follow a particular action. This allows for the agent to predict future 

states and forego current state maximum rewards for the possible greater total action in the 

future. Since future state predictions rely heavily on the environmental model the environment 

must first be sufficiently known by the agent for a plan to emerge that attempts at achieving a 

greater total reward. (Sutton & Barto, p. 8) 

Assume an agent has played a simple stochastic game; represented in figure 2, sufficient 

enough times so that its model of the environment is very close to be accurately representative 

of the real working environment. Each of the three states, {S, Sa, Sb}, has two possible actions 

that can be performed by the agent from that state. Each action in state S leads to either state 

Sa or Sb and regardless of the action performed in either state Sa or Sb the subsequent state 

reverts to S. If an agent were to operate under the policy of obtaining the maximum reward 

from any particular state at step N it will perform the action that rewards a value of 5, causing 

the state to change Sb, where at step N+1 the action that rewards a value of 2 will be 

performed for a total reward value of 7.An agent's value function affords the agent the ability 

to plan ahead and create action sequences across multiple states. Operating in the same game 

with sufficient knowledge of the three states and state spaces, an agent with a planning ahead 

value function, at step N would perform the action with a reward value of 2, causing the state 
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to change to Sa, where at step N+1 the action that rewards a value of 7 will be performed for a 

total reward value of 9. 

In the case of solitaire, a value function operating over the environment model might allow for 

the emergence of a simple strategy like forgoing a card placement in order to reveal a hidden 

card or in the case of the coin toss game, stopping the game at step 2 because the agent has 

received two heads which provides a reward of value 2 instead of flipping one more time with a 

50% probability of getting a head at step 3. The agent forgoes the action that might reward a 

greater or lesser reward for a guaranteed positive reward. 

 

2.2.3 Reward Function 

An agent's reward function determines the perception of a received reward. More specifically, 

it determines whether a reward was 'good' or 'bad' by comparing it other rewards received 

from the same state and also to rewards received from other states. In the simple coin flip 

game,  heads  would  be  perceived  by  the  reward  function  as  the  return  of  a  ‘good’  reward  and  

that  tails  would  be  perceived  as  a  ‘bad’  reward.  However,  the  reward  function might weight the 

return of tails depending on the state it appeared. A tails returned at step one might return a 

‘worse’  reward  than  a  tails  received  at  step  two  after  receiving  a  heads  at  step  one because the 

probability of receiving an optimal reward is greatly diminished. The reward function also 

determines what is considered an optimal reward for the value function by improving estimates 

of non-optimal actions in the environment model as information is collected by exploration. 
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Essentially  an  agent’s  reward  function  “defines  the  goal”  of  the  particular  reinforcement  

learning problem. (Sutton & Barto, p.7) 

 

 

2.2.4 Policy 

An agent's policy determines its behaviour at any particular time and is based on results given 

from the value and reward functions. (Sutton & Barto, p. 8) The relationship between the value 

and reward functions and performed actions is similar to the idea of stimulus and response. 

That is, a state provides an agent some stimulus and the policy derives a response based on 

values returned by the reward and value functions. The example of how the reward function 

perceives the reward of tails depending on the state at which it was received exemplifies 

exactly this; as the stimulus of the new state will suggest that a particular action take place. 

 

3. E-Greedy Algorithm 

The E-greedy approach is a very early learning example algorithm whose solution to the 

exploration versus exploitation dilemma was to reduce the issue of exploration to a probability 

E. That is, the agent will have an E probability of exploring at any particular time step. This 

means that an E value of 0 will result in an agent that never explores its environment but only 
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exploits its current knowledge and an E value of 1 will result in an agent that never exploits its 

knowledge but only explores its environment. 

Since E-greedy uses a probability model to determine exploration, it lacks a value function and 

cannot attempt to plan, it operates solely on the reward functions perception of state 

maximums derived from the environmental model. 
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Figure 3 Performance of three E-greedy algorithms with different values for E. The tests were 
performed on a simple repeated game with a single static state and a state space of 10 for 1000 
iterations. Each possible action performed by E-greedy supplied the algorithm with some 
numerical reward where the values were attributed to a particular action at random and 
remained constant throughout the entirety of the game. (Sutton & Barto, p. 29) 

The average reward graph in figure 3 shows that after 1000 steps the E=0.1 algorithm achieved 

a much greater average reward and also that it achieved a greater average reward in fewer 

steps than both the E=0.01 and E=0 algorithms. The optimal action percentage graph supports 

this conclusion as well however it also represents the data in a manner where an important 



14 
Exploration Versus Exploitation Dilemma in Reinforcement Learning 

inference can be made. The optimal action percentage graph shows that E=0.1 performed 

optimally 80% of the time and then appears to level off. It also shows that E=0.01 performed 

optimally 60% of the time but displays a steady rate of increase. If both of the algorithms were 

allowed to run for a greater amount of time it can be surmised, just by the nature of the values 

of E, that E=0.1 will ultimately achieve an optimal action percentage of 90% whereas E=0.01 will 

achieve an optimal action percentage of 99%.  

This idea can be reduced to out of every ten actions performed by E=0.1, regardless of the 

whether the optimal action is known or not, one of the actions performed will be non-optimal. 

E=0.01 operates under similar circumstances but will perform a non-optimal action one out of 

every one hundred actions. This demonstrates a correlation between the amount of time an 

agent will be allowed to learn its environment and the achievement of near optimal 

performance. Given sufficient time E=0.01 would obtain a greater average reward than E=0.1 

even though it would take much more time steps for it to do so. Finding an optimal value of E 

for a particular reinforcement learning problem depends heavily on the amount of time that an 

agent has to play that particular stochastic game. (Sutton & Barto, p. 26-31) 

 

4. E3 Algorithm (Explicit Exploration) 

The  E3  algorithm’s  approach to solving the exploration versus exploitation dilemmas is to use 

an explicit exploration model that uses direct and planned exploration. That is, an agent will 

directly explore, by performing the action it has tried in that state the fewest amount of times 
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in that particular state, until a state is known well enough where the greatest rewards for that 

state can be approximated causing planned exploration, when E3 encounters a known state it 

first attempts to find a near optimal action to exploit based on values returned to it by the 

value function and if an optimal action is not found the most well-known state action pairs are 

set to return a reward of zero and the remaining actions are set to return an optimal value 

temporarily in the reward function, to occur. Sutton & Barto, (p. 39-40), describe this as 

"optimism in the face of uncertainty" and this approach attempts to cause the agent to 

encounter previously unknown states by performing series of non-optimal actions. (Kearns & 

Singh, 2002) 

A state will only be considered known if the visitation count value of that state reaches a 

threshold derived from the environmental model, which is represented as the record of the 

visit counts for each state as well as the actions performed from that state as a state action pair 

K(s, a), as the number of visit counts, the size of the state space, and the number of actions 

performed from that state. Essentially the threshold is determined by the number of times the 

state has been visited to the amount of actions performed in that state, to how many total 

actions exist in the state space. E3’s threshold value relies upon the pigeon-hole principle that 

after N iterations, where N equals the number of possible states, states can begin to become 

approximately known. A state with a relatively small state space becomes known much quicker 

than a state with a large state space. (Kearns & Singh, 2002) 
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5. R-Max Algorithm (Implicit Exploration) 

The R-Max algorithm approach uses an implicit exploration model which utilizes the idea of 

optimistic initial values. (Sutton & Barto, p. 39)That is, as an initial condition the agent will 

assume that every possible action in every state provides the optimal reward. This implicit 

approach requires the agent begin with some preconceived model of the environment that is 

updated as it encounters various state changes by performing actions. It is not required that 

this preconceived model need accurately represent the environment; it only need be some 

approximation that the agent can adapt. The environment model is updated in very much the 

same manner as E3 by recording all state action pairs, K(s, a). (Kearns & Koller, 1998) There 

exist however the distinction that since R-Max was designed to be used in multiplayer 

stochastic games and E3 was designed to operate on single player stochastic games, R-Max 

instead records joint state action pairs, where joint state action pairs are combinations of 

sequential state action pairs amongst actions performed by all players. (Brafman & Tennenholtz, 

2002) 
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Figure 4Representation of a simple three state stochastic game. The left graph displays R-Max's 
initial model view of the environment. The right graph displays the values of the actual 
environment. Each connecting edge represents a possible action from that state with its 
corresponding reward. 

Inherently this algorithm spends much of its time exploring at the beginning of run time so that 

the vast majority of the total running time later on is spent exploiting. This also allows for the 

unique situation where after the agent has learned an optimal action for a particular state, 

there is still a possibility that it will unknowing exploit that action early on. That is, if the current 

state space has one known action that rewards an optimal reward and another unknown action 

that the agent believes rewards an optimal reward, there is a 50% chance that the agent will 

perform the optimal action at that particular time step. By simple probabilities, if there exist 

actions that reward optimal values, R-Max has the slight chance to perform optimally in very 

early stages of running that overall will produce a greater total reward. 

 

6. Expanded Algorithm (REX) 

The REX algorithm's approach uses an informed exploration model which utilizes objet 

generalization so that when exploration occurs, the agent can apply results from that action 

across actions in other states, increasing known state action pairs, and potentially reducing the 

amount of state action pairs that need to be explored. This is a great improvement over the 

previously examined algorithms as this potentially greatly reduces the amount of time required 

for states to become known meaning that exploitation can occur much earlier. (Lang & 
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Toussaint & Kersting, 2012) Object generalization can be best described by relating the game 

Pac-Man.  

Both the E3 and R-Max algorithms must experience every action in a state in order to create a 

model that allows them to act optimally. (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002) 

This means that if these algorithms were applied to a game of Pac-Man the player must have 

their turn ended by each of the four ghosts in order to learn to avoid all ghosts. With REX's 

object generalization if a turn has been ended by a single ghost it can apply the learned 

behaviour over all ghost as the simple rule, avoid ghosts. This allows for the compression of 

state action pairs across all pairs, which not only reduces the number of times an agent must 

explore, but also potentially greatly reduces the amount of unknown states every time a new 

unknown state is encountered. It is important to note that state and state action pair 

compression operates on the assumptions that all states’ features remain constant unless 

directly changed by the agent and that the agent is naturally uncertain about its definitions of 

objects. This allows the agent to update its generalizations over objects as new information is 

perceived over time. 

While object generalization works to compress the total number of states and actions, it is the 

transitional model, the probability that an action will result in a particular state, and model of 

environment that indirectly determine whether to explore or exploit at a particular time step. 

This is accomplished by both models estimating a possible visitation count for a particular state 

using the compressed data and depending on whether the returned value reaches a particular 

threshold, not unlike the E3 algorithm, either the E3 or R-Max algorithm is run over the current 
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state space. REX attempts to utilize all of the positive features of both E3 and R-Max by 

determining which algorithm is suitable for a particular situation. This is how the idea of 

informed exploration emerges. When REX becomes knowledgeable enough of the environment 

it is able to make informed decisions on which algorithm would best suit the current state. 

(Lang & Toussaint & Kersting, 2012) 

 

7. Conclusion 

The exploration versus exploitation dilemma is difficult problem to approach as in many cases it 

is far easier to tailor an algorithm to suit the needs of a particular stochastic game than creating 

one that is all encompassing. This dilemma is made even more difficult by the relationship 

between the number of possible states and actions for a particular stochastic game greatly 

increasing the amount of time an agent will require becoming sufficiently knowledgeable about 

its environment. The E-greedy algorithm only explores by a probability of the value E and E3 

and R-Max must explore every possible action to sufficiently know a particular state. If the 

agent exists in a sufficiently complex stochastic game with a large number of states and state 

spaces, then its ability to efficiently learn about its environment is dramatically reduced. REX 

provided a method to address this issue by its use of object generalization however, at its core 

it still utilized the E3 and R-Max algorithms. 

The exploration versus exploitation dilemmas is a still ongoing research problem and has a 

great many different approaches not examined in this paper. It has still yet to achieve a 
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standardized approach that works across all reinforcement learning problems and based on the 

possible complexities of some of the problems that exist, there may never be a single set 

standard for exploration versus exploitation dilemma. Instead it might be more appropriate for 

a standard collection of varying approaches to exist where each one handles a particular set of 

problems. 

 

8. Possible Future Work 

It would be worthwhile to compare the effectiveness of each of these algorithms against one 

another to determine which performs more optimally and under which circumstances. I 

propose a suite of stochastic games be played by each of the algorithms compared. All games 

should be as different as possible in number of states as well as average state spaces. A single 

game from the suite should be played by the agents at least three different times where the 

amount of time allotted to the agent is increased so as to obtain information how state size, 

state space, and learning time affect learning. 
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