

Methods of Preproduction for Material Layout in a 3D Printing Pipeline.

Eric Greenberg

CSU Stanislaus

CS 4960, Spring 2015

Dr. Melanie J. Martin

4-3-2015

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 2

Methods of Preproduction for Material Layout in a 3D Printing Pipeline

Abstract

As more uses are discovered for 3D printers, it is becoming important to design

software to control the way materials are handled. This paper will look at two ways to

control material layout in the preproduction phase of a 3D printing pipeline. First, it will

explore a method designed by Disney Research Labs for hollowing the internal space of a

model in a non-programmable 3D pipeline. Second, it will explore the fablet process of a

programmable 3D pipeline known as OpenFab.

Introduction

3D printers are a technology with vast potential in almost any field that involves

prototyping, sculpting, or any form of production. At the industry level, medical

researchers, car manufacturers, prop designers and many other professionals have found

3D printers useful in everything from car manufacturing to creating cell structures. As the

prices of these printers have dropped to affordable levels, hobbyists have begun

purchasing, building, and experimenting with personal 3D printers. These hobbyists have

started to make a variety of objects, such as action figures, models, movie prop replicas,

replacement parts for appliances, functional drones, functional weapons and artificial

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 3

limbs. These systems have allowed a vast array of digital models to become physical

models in the homes of many enthusiasts.

Unfortunately, simply taking a model designed in software and sending it to a 3D

printer can result in unforeseen difficulties. Some of the difficulties encountered in the

3D printing process include time constraints, costs, and stability.

 Printing a 3D structure can be time intensive. A recent study showed a sample

model taking anywhere from 3 hours to 11.5 hours on commercial printers. (Stultz, M.

2015) Cost of materials can be expensive. In 2013, the material costs per cubic centimeter

could range from $1.40 USD for flexible plastic to $20 USD for silver. (Wang, W, 2013)

The structures that are modeled in a virtual environment may not be physically

stable in the real world, resulting in structures that are too brittle or weak to withstand

gravity, pressure or use. (Stava, O., et al. 2012)

Fortunately, there are methods to program solutions to address these issues. One

method is to use Goal-Based Material Design solutions, which generally involve software

that takes models and manipulates them to meet certain specifications or constraints.

(Vidimþe, K. et al. 2013) These specifications could be as simple as assessing the

printability of a 3D model before sending it to be printed (Telea, A., & Dalba, A. 2001)

or as complex as building custom internal frame structures to add durability while

reducing wasted materials. (Wang, W., et al. 2013) These solutions can be self-contained

and automatic. (Vidimþe, K. et al. 2013) However, problems that require a professional’s

oversight, an artist’s aesthetics, or fine tuning from the printer’s operator can be difficult

to solve when these solutions are automated. Worse still, not all of these Goal-Based

Material Design solutions are transferable between models, meaning that any custom

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 4

adjustments made by the operator may have to be repeated on a per-model basis. To

address this, research is being done on developing programmable 3D printer pipelines. A

programmable 3D printer pipeline is a solution that could allow for adjustments to be

saved and transferred between models, allowing for future automation. Potentially, a 3D

printer pipeline could also lower computational strain as well as reduce print time,

depending on the design implementation. (Vidimþe, K. et al. 2013)

This paper will explore an example of how each of these methods of

preproduction material layout systems can control the use of material. This paper will

look at a Goal-Based Material Design solution for hollowing a structure, as well as how a

programmable 3D printer pipeline called as OpenFab can handle the layout of material

using a method known as fablets.

Definitions

Some definitions are needed before it is possible to discuss the 3D printer

pipeline. Because designing custom objects to be produced by 3D printers begins at a

digital modeling phase, it’s possible to implement some material handling during the

digital design phase (Stava, O. et al. 2012) — which means it’s necessary to have an

understanding of some basic computer graphics terminology before discussing the

manipulation of models.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 5

Pixels

In 2D graphics, the smallest unit of measurement is a picture element, abbreviated

as “pixel”. (Shirley, P. et al. 2005) On most modern monitors, pixels are represented by

the three lights that produce the wavelengths needed by the human eye to see color: red,

green, and blue (RGB). These groupings of three lights are the physical manifestation of

a pixel. When different intensities of these lights are used, different colors are perceived

by humans. Traditionally, there are 256 steps between the least intense output of light to

the most intense output of light.

The resolution of monitors in America is measured by pixels per inch (ppi). Pixels

are almost always placed evenly on a rectangular grid. However, in a computer system a

pixel is a bit different.

While the physical pixel only has three lights at various levels of intensity and a

physical location, a digital representation of an image is considerably more complex. The

simplest form is a bitmap image, but even then a pixel can have more information stored

in it. While this information is dependent on the file structure and image mode, many

pixels will have four channels, three for dictating the intensity of red, green and blue

light, and one “Alpha” channel. This Alpha channel is used to describe transparency – the

higher the value, the more “transparent” a pixel is. This is useful when multiple pixels are

rendered over one another; the transparency caused by the Alpha channel allows pixels

“below” the transparent pixels to show through.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 6

Quadtrees

For this paper, you will need to understand how octrees are used in conjunction

with 3D rendering, and to understand octrees you must first understand quadtrees and

how they are used in 2D rendering.

As stated above, 2D graphics can utilize pixels, and each pixel’s position needs to

be stored. While there are simple methods for doing this, such as two-dimensional arrays,

there are more flexible solutions that use tree structures. One common tree for encoding

images is the quadtree (Karrels, E. 1999), which is a tree structure in which every parent

has four children. A quadtree is mapped to an image in a manner similar to the geometric

solution for Zeno’s Paradox. The entire image is set to equal 1, and is linked to the root.

When you give the root its four children, the image is subdivided into four quadrants,

where each child represents one of the quadrants. Each time a node is given four children,

the corresponding quadrant is further subdivided. (Demmel, J. 1996)

Changes to individual pixels, or connected areas of pixels, can be represented by

adding the appropriate data to the corresponding nodes in the quadtree. This can allow

areas of duplicate data to automatically be discarded. When a quadrant or sub-quadrant is

composed of identical data, only the highest node (largest quadrant) needs to be stored.

(Spatial Partitioning and Indexing: Regular Decomposition: Quadtrees. 2010)

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 7

Diagram by Eric Greenberg; based on work by Demmel, J. 1996, Johnsonz, N. 2009, Karrels, E. 1999,

and Spatial Partitioning and Indexing: Regular Decomposition: Quadtrees. 2010.

Vectors

In computer graphics, a vector is a description of direction and length. (Shirley, P.

2005) In 3D modeling, vectors are used to describe points, positions, offsets and other

spatial relations. They are a standard way to model objects in most 3D systems, and can

be used in conjunction with transformation matrices to describe and perform

transformation processes on 3D structures.

Voxels

While a two-dimensional image only needs pixels to provide information about

light intensity (and maybe transparency), three-dimensional images need considerably

more information. Because 3D models are expected to be viewable from different

angles, under different light sources and appear to be made out of different materials that

interact in a variety of ways, considerably more data (such as diffusion, reflection,

refraction, etc.) needs to be stored.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 8

A volume element (abbreviated voxel) is a way of storing and describing the

“material” a 3D model is “made” out of. (Angel, E. 2008) Essentially, it’s the description

of an object’s volume behavior and texture design. This allows for complex interactive

structures, like glass or stone, to be programmed independently of a model’s shape.

Additionally, this separation of shape (described with vectors) and volume (described

with voxels) allows for textures and volumes to be reused in different models, saving

programming time.

Because 3D printers produce a volumetric material, it’s not uncommon to

measure their output resolution in voxels per cubic inch or centimeter. (Fang, S. (n.d.);

Crassin, C., & Green, S. 2012) Once a resolution is set, an entire physical structure can be

described by voxels alone. Because of this, it is possible to digitally model structures

using only a discrete set of voxels. In some instances, it’s possible to dynamically adjust

the resolution (size) of voxels over a discrete space by using octrees. (Bächer, M., et al.

2014)

Shaders

“A shader procedurally defines the appearance of an object to be rendered in

computer graphics.” (Vidimþe, K. et al. 2013) While a voxel describes how a material

behaves, and in doing so can indirectly describe the surface appearance, a shader deals

with the texture (or image) applied to the material, thereby directly affecting the final

render.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 9

Octrees

A quadtree is capable of creating a reduced position map in 2D space. However,

an octree is capable of creating a reduced position map in 3D space. (Demmel, J. 1996).

Rather than taking a square, mapping it to the root of a tree and then subdividing it into

four squares for each level that is descended, a cube is taken, mapped to the root of a tree

and then subdivided into four cubes for each level that is descended.

Diagram by Eric Greenberg; based on work by Demmel, J. 1996. As the octree gains depth, more

voxels are created through division, resulting in an increased resolution throughout the finite volume of the
cube.

3D Pipelines

“3D pipeline” is the general term for whatever system of software and hardware is

in place to convert digital models into projectable images.

A fixed-function 3D pipeline is a 3D pipeline that has an unchangeable set of

provided ways of handling data. (Zhao, Y. 2008a; Zhao, Y. 2008b)

 A programmable 3D pipeline is one that allows for control over some or all of the

steps taken in the pipeline. (Wei, L. 2005) This means that it is possible to refine and

customize the pipeline for specific tasks, allowing for greater speed in the rendering

process and more complex results.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 10

Goal-Based Material Design solution

First we will look at a Goal-Based Material Design solution.

In 2014 Disney Research Labs designed a series of algorithms that could take a

3D model and, with minimal visible distortion, print a top that would balance on a fixed

point when spun. The process that they created could be considered analogous to a fixed-

function 3D pipeline, as it had a set of unchangeable pre-programmed ways of

manipulating the data that was sent to it in order to produce a specific result.

The system has the single goal of creating a top from a model with minimal

distortion, and it achieved this goal through a series of Goal-Based Material Design

solutions. One of these solutions is a hollowing process that reduces the amount of

material used during the printing process. The researchers designed this in order to

control the weight of the tops being produced, but similar algorithms are designed and

used to reduce material waste, thereby reducing cost. What makes the Disney Research

Labs’ hollowing solution interesting is that it is capable of adjustable print resolution and

it is able to preserve sections of material within the hollowed area.

While considerable preprocessing is done earlier in this “pipeline” before the data

is passed to the hollowing process, much of it consists of solving physics equations

related to spinning tops and is beyond the scope of this paper. For brevity, any necessary

information will be included in brief, as needed.

The hollowing process is as follows:

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 11

First, a model is passed from a previous algorithm, where the desired void areas

have been calculated. At this point, the model has been treated as a region �, and has

broken down into two parts: the skin of a specified thickness called the boundary shell or

�b, and the interior area of the model called �i.

Additionally, the set of all material to be kept has been set during a previous

process where the internal volume is initially calculated. This is done by marking off the

areas to be voided, which is a subset of the interior �i referred to as �’ where �’ Ӭ��i

Diagram modified from diagrams in Spin-It: Optimizing Moment of Inertia for Spinnable Objects (Bächer,
M. et al. 2014)

With this data preprocessing done, the hollowing process can start. To accomplish

this, the adjusted volume, referred to as S�-�’, is reduced into a binary fill variable ȕk

where ȕk Ѯ {0,1}. In other words, at any given location in the model the corresponding

ȕk will either be 0 (an area filled with a printed material) or 1 (a void, or an area not filled

with a printed material). During this reduction process, it becomes clear that the size of

the voxels can be varied. Where there is a large empty space, there doesn’t need to be a

high resolution detail of the area inside of the space. In fact, the only time that needs to be

a high resolution of voxels is when an edge is encountered. (Bächer, M. et al. 2014) This

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 12

means that the interior can be represented by octree cells as shown below.

Diagram from Spin-It: Optimizing Moment of Inertia for Spinnable Objects (Bächer, M. et al. 2014)

To create this reduction, Disney Research Labs designed the following equation:

Volume = S�-S�' = S� - ȕk S�k

where �i = Ґk S� is a partitioning of the interior into octree cells �k.

The void space �' would consist of all cells �k where ȕk = 1 (Bächer, M. et al.

2014)

In this initial run, the resolution is set at a midpoint between the lowest and the

highest possible resolutions the 3D printer is capable of. From this point it is possible to

raise or lower the resolution as necessary.

 Note that the only time a non-one or none-zero could be detected is on a

boundary. This is searched for by simply checking each cell for a non-binary result. If

one is found, it is resolved by increasing the resolution of the voxels in that octree node

until either the fractional area is gone, or until the highest resolution supported by the 3D

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 13

printer is reached. If the latter occurs, then the binary numbers can be rounded to either a

one or a zero. (Bächer, M. et al. 2014)

Diagram from Spin-It: Optimizing Moment of Inertia for Spinnable Objects showing the process of
increasing the voxel resolution to refine an edge. (Bächer, M. et al. 2014)

Once the resolution has been raised as high as necessary in areas that require

detail, the areas that do not require detail can be lowered. This is done easily by selecting

a cell then searching its neighboring cells to see if the binary values are identical. If they

are, the cells are merged. Once the cells are at the lowest resolution the 3D printer

supports, the process is terminated. (Bächer, M. et al. 2014)

The last consideration of the voiding process is how to handle the cells �k that

overlap with the boundary shell �b . The solution implemented was to simply treat the

cells touching and overlapping with the boundary as a sub-tree where the boundary must

be filled (ȕk = 0) at the highest resolution the 3D printer can print. (Bächer, M. et al.

2014)

Diagram from Spin-It: Optimizing Moment of Inertia for Spinnable Objects. This diagram shows the
process of increasing the voxel resolution to refine an edge. “Cells corresponding to fill variables are
marked in red, their subtrees in black ” (Bächer, M. et al. 2014)

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 14

At this point, the Goal-Based Material Design solution for hollowing is complete,

and the data is sent further down the pipeline for voxelization using an octree-cage

extraction technique that is beyond the scope of this paper.

Programmable 3D Pipeline Solutions

Now that a Goal-Based Material Design solution for handling the materials in a

non-programmable 3D pipeline has been covered in detail, it is possible to discuss an

example of pre-production material handling in a programmable 3D Printing Pipeline.

This paper will use the OpenFab Programmable 3D Pipeline’s “fablets” as an example.

The OpenFab pipeline is a potential solution to a number of problems in the realm

of 3D printing. It can be used with multiple types and brands of 3D printers, allowing for

reusable code. (Vidimþe, K. et al. 2013) The pipeline results in streamable data, which

allows for 3D printers to handle smaller, less computationally intensive print jobs. This

structure also allows OpenFab to perform under memory and computational constraints.

OpenFab also allows for flexible, programmable, multi-material handling in the

preprocessing phase using a technique involving “fablets.” Fablets are responsible for the

surface and volume controls of the material being printed. Essentially, they are in control

of material layout. Fablets and their implementation will be the focus of this section,

since much of the programmable OpenFab Pipline is beyond the scope of this paper.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 15

Diagram from: Openfab: A programmable pipeline for multi-material fabrication showing the fablets
place in the OpenFab Pipeline, positioned where it can control the surface and volume of a printed model.
(Vidimþe, K. et al. 2013)

A fablet is “a shader like program which procedurally defines surface detail and

material composition throughout the object volume.” (Vidimþe, K. et al. 2013) They are

designed to work with additive manufacturing processes, specifically, 3D printers. The

purpose of a fablet is to describe the material contents of an object without having to

describe the object itself. This is done by using a domain-specific, C-like language called

“OpenFL” to describe both how the volume of the material is to be built using additive

materials as well as how those materials will interact with a geometry once they are

applied to a model. This is accomplished by using various keywords in OpenFL to

describe how to change a material when it is near the surface of a model (“near” being

defined by the user). This means that unlike a Goal-Based Material Design solution, once

a fablet is programmed it can detached from specific geometry and reused for other

models. For example, while the hollowing process described previously was designed to

avoid hollowing specific sections of a model, these sections were defined automatically

by the pipeline without user intervention. This means that if the user wanted to have an

identical hollowing pattern appear in different models, the entire algorithm would need to

be re-designed. If a hollowing technique were to be implemented with a fablet in

OpenFab, the structure could be repeated identically across different models.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 16

Because they are programmable, fablets can also be designed to mimic Goal-

Based Material Design solutions. An example of this is provided below.

fablet MagicPostcard {

@uniform {
float2 border;
float textureDepth, maxThickness;
ImageTexture2D fg, bg;
Material white, black;

}
const int CARD_FRONT = 0, CARD_BACK = 1;

@Surface(@varying {

SurfaceAttributes attr,
float2 uv, int face,
out float2 uvOut, out int faceOut
})

{
// pass through attributes
uvOut = uv;
faceOut = face;
if (face == CARD_BACK) {
 // back face

float L = bg.Sample1(uv(0), uv(1), 0);
float thickness;
if (uv(0) < border(0) || uv(0) > 1 - border(0)

||
uv(1) < border(1) || uv(1) > 1 -

border(1)) f
thickness = maxThickness;

} else {
// material approximation: transmission
// has quadratic falloff with thickness
thickness = sqrt(1 - L) * maxThickness;
}
return attr.n * thickness;

} else {
// no displacement on the front and sides
return 0;
}

}
@Volume(@varying {

VolumeAttributes attr,
@nearest float2 uv,
@nearest int face

})
{

MaterialComposition mc;
if (face == CARD_FRONT && // front face

abs(distance(attr.voxelCenter))
<= textureDepth) {

// surface texture
float L = fg.Sample1(uv(0),

uv(1), 0);
mc.Set(white, L);
mc.Set(black, 1 - L);

} else {
// background/border
mc.Set(white, 1);
}

return mc;
}

}

Code and images from: Openfab: A programmable pipeline for multi-material fabrication (Vidimþe, K. et
al. 2013) showing a fablet coded in OpenFL that takes two inputs – a foreground image (in this example,
the postcard above) and a background image (not pictured). The fablet then creates a plate using
displacement on a single axis (see the image below). This sort of process can be repeated using different
images for input. This creates a structure that has the results one would expect from a Goal-Based Material
Design solution, but can be fine-tuned by the operator.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 17

Images from: Openfab: A programmable pipeline for multi-material fabrication (Vidimþe, K. et al. 2013)
demonstrating a repeating hollowing pattern copied from one model and reused on another model.

Images from: Openfab: A programmable pipeline for multi-material fabrication(Vidimþe, K. et al. 2013)
demonstrating how different fablets can be loaded onto the same model to create different, repeatable
results.

As seen from the examples above, programmability in a 3D pipeline allows for a

wide range of material layout solutions. Potentially, a well designed programmable 3D

pipeline would be able to emulate many Goal-Based Material Design solutions.

Unfortunately, this would mean the programmers of the Goal-Based Material Design

solution would have to re-implement the algorithms in whatever domain-specific

language is being used by the 3D pipeline the solution is being ported into. This may not

always be palatable, as authoring tools for various stages in 3D pipelines, like OpenFab,

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 18

were still in development as of 2013. (Vidimþe, K. et al. 2013) This could mean that the

operator would have to learn a new programming language native to each pipeline.

Additionally, Goal-Based Material Design solutions can be small and precise while a 3D

printing pipeline can be quite large and only as precise as its adjustments allow it to be,

meaning that there is a time and a place for each type of solution.

Summary

As stated before, it is becoming important to design software to control the way

3D printer materials are handled in order to address limitations such as physics, cost and

other constraints that may not be immediately apparent to the 3D printer’s operator.

Preproduction material layout controls are a way to address these issues. Two kinds of

preproduction material layout control methods in the 3D printing pipeline are Goal-Based

Material Design solutions and Programmable 3D Pipelines. Goal-Based Material Design

solutions generally involve software that takes models and manipulates them to meet

certain specifications or constraints (Vidimþe, K. et al. 2013), whereas Programmable 3D

Pipelines can use fabrication languages to precisely control the layout of a material

throughout a printed volume. (Chen, S. et al. 2013) Both methods have advantages that

can make them appealing to programmers and 3D printer operators alike.

In the grand scheme of technology, 3D printers have been around for a relatively

short amount of time, but have still managed to make made fantastic gains in

technological advancements. The future of this technology is still under development,

and promises to continue to advance in new and splendid ways.

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 19

Sources

Angel, E. (2008). OpenGL: A primer (3rd ed.). Boston: Pearson Addison-Wesley.

Bächer, M., Whiting, E., Bickel, B., & Sorkine-Hornung, O. (2014). Spin-It: Optimizing

Moment of Inertia for Spinnable Objects. ACM Transactions on Graphics, 33(4).

Chen, S., Levin, D., Sitthi-Amorn, P., Didyk, P., & Matusik, W. (2013). Spec2Fab: A

reducer-tuner model for translating specifications to 3D prints. ACM Transactions

on Graphics (TOG) - SIGGRAPH 2013 Conference Proceedings, 32(4).

Crassin, C., & Green, S. (2012). Octree-Based Sparse Voxelization Using the GPU

Hardware Rasterizer. In P. Cozzi & C. Riccio (Eds.), OpenGL Insights (pp. 303-

319). New York: CRC Press.

Demmel, J. (1996, April 11). CS267: Lecture 24, Apr 11 1996. Retrieved March 21,

2015, from http://www.cs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html

Fang, S. (n.d.). Hardware Accelerated Voxelization. Retrieved March 22, 2015, from

http://cs.iupui.edu/~sfang/vg99.pdf

Johnsonz, N. (2009, November 9). Damn Cool Algorithms: Spatial indexing with

Quadtrees and Hilbert Curves. Retrieved March 21, 2015, from

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 20

http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-

Quadtrees-and-Hilbert-Curves

Karrels, E. (1999, September 20). AMC 1994 regional, problem F Quadtrees. Retrieved

March 21, 2015, from http://www.karrels.org/Ed/ACM/weur94/prob_f.html

Shirley, P., Ashikhmin, M., Gleicher, M., Marschner, S., Reinhard, E., Sung, K., ...

Willemen, P. (2005). Fundamentals of Computer Graphics (2nd ed.). Wellesley,

MA: A K Peters.

Spatial Partitioning and Indexing: Regular Decomposition: Quadtrees. (2010, August 11).

Retrieved March 22, 2015, from

http://www.gitta.info/SpatPartitio/en/html/RegDecomp_learningObject3.html

Stava, O., Vanek, J., Benes, B., Carr, N., & MČch, R. (2012). Stress relief: Improving

structural strength of 3D printable objects. ACM Transactions on Graphics, 31(4).

Stava, O., Vanek, J., Benes, B., Carr, N., & MČch, R. (Writer) (2012b). Stress relief:

Improving structural strength of 3D printable objects. ACM Transactions on

Graphics, 31(4). (Web). Retrieved from

http://dl.acm.org/citation.cfm?doid=2508363.2508382&preflayout=flat#formats

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 21

Stultz, M. (2015, March 17). Will This New Technology Make 3D Printers 25 Times

Faster? - Make:. Retrieved March 18, 2015, from

http://makezine.com/2015/03/17/will-new-technology-make-3d-printers-25-

times-faster/

Telea, A., & Dalba, A. (2001). Voxel-Based Assessment of Printability of 3D Shapes.

Proc. of Mathematical Morphology and Its Applications to Image and Signal

Processing, 393–404-393–404. Retrieved March 22, 2015, from

http://www.cs.rug.nl/alext/PAPERS/ISMM11/paper.pdf

Vidimþe, K. , Wang, S. , Ragan-Kelley, J. , & Matusik, W. (2013). Openfab: A

programmable pipeline for multi-material fabrication. ACM Transactions on

Graphics (TOG), 32(4), 1-12. doi:10.1145/2461912.2461993

Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., . . . Liu, X. (2013). Cost-

effective Printing of 3D Objects with Skin-Frame Structures. ACM Trans. Graph,

32(6), 177th ser. doi:10.1145/2508363.2508382

http://doi.acm.org/10.1145/2508363.2508382

Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., . . . Liu, X. (2013,

November). Cost-effective printing of 3D objects with skin-frame structures

Supplimentals. ACM SIGGRAPH ASIA 2013. Lecture conducted from Hong

Methods of Preproduction for Material Layout in a 3D Printing Pipeline 22

Kong,

http://dl.acm.org/citation.cfm?doid=2508363.2508382&preflayout=flat#formats

Wei, L. (2005, October 25). A Crash Course on Programmable Graphics Hardware.

Retrieved March 24, 2015, from

http://graphics.stanford.edu/~liyiwei/courses/GPU/paper/paper.pdf

Zhao, Y. (2008a). Programmable Graphics Pipeline. Retrieved March 24, 2015, from

http://www.cs.kent.edu/~zhao/gpu/lectures/ProgrammableGraphicsPipeline.pdf

Zhao, Y. (2008b). Graphics Pipeline. Retrieved March 24, 2015, from

http://www.cs.kent.edu/~zhao/gpu/lectures/graphicspipeline.pdf

