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Abstract 

 

As more uses are discovered for 3D printers, it is becoming important to design 

software to control the way materials are handled. This paper will look at two ways to 

control material layout in the preproduction phase of a 3D printing pipeline. First, it will 

explore a method designed by Disney Research Labs for hollowing the internal space of a 

model in a non-programmable 3D pipeline. Second, it will explore the fablet process of a 

programmable 3D pipeline known as OpenFab. 

 

Introduction 

 

3D printers are a technology with vast potential in almost any field that involves 

prototyping, sculpting, or any form of production. At the industry level, medical 

researchers, car manufacturers, prop designers and many other professionals have found 

3D printers useful in everything from car manufacturing to creating cell structures. As the 

prices of these printers have dropped to affordable levels, hobbyists have begun 

purchasing, building, and experimenting with personal 3D printers. These hobbyists have 

started to make a variety of objects, such as action figures, models, movie prop replicas, 

replacement parts for appliances, functional drones, functional weapons and artificial 
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limbs. These systems have allowed a vast array of digital models to become physical 

models in the homes of many enthusiasts. 

Unfortunately, simply taking a model designed in software and sending it to a 3D 

printer can result in unforeseen difficulties. Some of the difficulties encountered in the 

3D printing process include time constraints, costs, and stability. 

 Printing a 3D structure can be time intensive. A recent study showed a sample 

model taking anywhere from 3 hours to 11.5 hours on commercial printers. (Stultz, M. 

2015) Cost of materials can be expensive. In 2013, the material costs per cubic centimeter 

could range from $1.40 USD for flexible plastic to $20 USD for silver. (Wang, W, 2013)  

The structures that are modeled in a virtual environment may not be physically 

stable in the real world, resulting in structures that are too brittle or weak to withstand 

gravity, pressure or use. (Stava, O., et al. 2012) 

Fortunately, there are methods to program solutions to address these issues. One 

method is to use Goal-Based Material Design solutions, which generally involve software 

that takes models and manipulates them to meet certain specifications or constraints. 

(Vidimþe, K. et al. 2013) These specifications could be as simple as assessing the 

printability of a 3D model before sending it to be printed (Telea, A., & Dalba, A. 2001) 

or as complex as building custom internal frame structures to add durability while 

reducing wasted materials. (Wang, W., et al. 2013) These solutions can be self-contained 

and automatic. (Vidimþe, K. et al. 2013) However, problems that require a professional’s 

oversight, an artist’s aesthetics, or fine tuning from the printer’s operator can be difficult 

to solve when these solutions are automated. Worse still, not all of these Goal-Based 

Material Design solutions are transferable between models, meaning that any custom 
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adjustments made by the operator may have to be repeated on a per-model basis. To 

address this, research is being done on developing programmable 3D printer pipelines. A 

programmable 3D printer pipeline is a solution that could allow for adjustments to be 

saved and transferred between models, allowing for future automation. Potentially, a 3D 

printer pipeline could also lower computational strain as well as reduce print time, 

depending on the design implementation. (Vidimþe, K. et al. 2013) 

This paper will explore an example of how each of these methods of 

preproduction material layout systems can control the use of material. This paper will 

look at a Goal-Based Material Design solution for hollowing a structure, as well as how a 

programmable 3D printer pipeline called as OpenFab can handle the layout of material 

using a method known as fablets. 

 

Definitions 

 

Some definitions are needed before it is possible to discuss the 3D printer 

pipeline. Because designing custom objects to be produced by 3D printers begins at a 

digital modeling phase, it’s possible to implement some material handling during the 

digital design phase (Stava, O. et al. 2012) — which means it’s necessary to have an 

understanding of some basic computer graphics terminology before discussing the 

manipulation of models.  
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Pixels  

In 2D graphics, the smallest unit of measurement is a picture element, abbreviated 

as “pixel”. (Shirley, P. et al. 2005)  On most modern monitors, pixels are represented by 

the three lights that produce the wavelengths needed by the human eye to see color: red, 

green, and blue (RGB). These groupings of three lights are the physical manifestation of 

a pixel. When different intensities of these lights are used, different colors are perceived 

by humans. Traditionally, there are 256 steps between the least intense output of light to 

the most intense output of light.  

The resolution of monitors in America is measured by pixels per inch (ppi). Pixels 

are almost always placed evenly on a rectangular grid. However, in a computer system a 

pixel is a bit different.  

While the physical pixel only has three lights at various levels of intensity and a 

physical location, a digital representation of an image is considerably more complex. The 

simplest form is a bitmap image, but even then a pixel can have more information stored 

in it. While this information is dependent on the file structure and image mode, many 

pixels will have four channels, three for dictating the intensity of red, green and blue 

light, and one “Alpha” channel. This Alpha channel is used to describe transparency – the 

higher the value, the more “transparent” a pixel is. This is useful when multiple pixels are 

rendered over one another; the transparency caused by the Alpha channel allows pixels 

“below” the transparent pixels to show through.  
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Quadtrees  

For this paper, you will need to understand how octrees are used in conjunction 

with 3D rendering, and to understand octrees you must first understand quadtrees and 

how they are used in 2D rendering. 

As stated above, 2D graphics can utilize pixels, and each pixel’s position needs to 

be stored. While there are simple methods for doing this, such as two-dimensional arrays, 

there are more flexible solutions that use tree structures. One common tree for encoding 

images is the quadtree (Karrels, E. 1999), which is a tree structure in which every parent 

has four children. A quadtree is mapped to an image in a manner similar to the geometric 

solution for Zeno’s Paradox. The entire image is set to equal 1, and is linked to the root. 

When you give the root its four children, the image is subdivided into four quadrants, 

where each child represents one of the quadrants. Each time a node is given four children, 

the corresponding quadrant is further subdivided. (Demmel, J. 1996) 

Changes to individual pixels, or connected areas of pixels, can be represented by 

adding the appropriate data to the corresponding nodes in the quadtree. This can allow 

areas of duplicate data to automatically be discarded. When a quadrant or sub-quadrant is 

composed of identical data, only the highest node (largest quadrant) needs to be stored. 

(Spatial Partitioning and Indexing: Regular Decomposition: Quadtrees. 2010) 
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Diagram by Eric Greenberg; based on work by Demmel, J. 1996, Johnsonz, N. 2009,  Karrels, E. 1999, 

and Spatial Partitioning and Indexing: Regular Decomposition: Quadtrees. 2010. 
 

Vectors 

In computer graphics, a vector is a description of direction and length. (Shirley, P. 

2005) In 3D modeling, vectors are used to describe points, positions, offsets and other 

spatial relations. They are a standard way to model objects in most 3D systems, and can 

be used in conjunction with transformation matrices to describe and perform 

transformation processes on 3D structures. 

 

Voxels 

While a two-dimensional image only needs pixels to provide information about 

light intensity (and maybe transparency), three-dimensional images need considerably 

more information. Because  3D models are expected to be viewable from different 

angles, under different light sources and appear to be made out of different materials that 

interact in a variety of ways, considerably more data (such as diffusion, reflection, 

refraction, etc.) needs to be stored.  
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A volume element (abbreviated voxel) is a way of storing and describing the 

“material” a 3D model is “made” out of. (Angel, E. 2008) Essentially, it’s the description 

of an object’s volume behavior and texture design. This allows for complex interactive 

structures, like glass or stone, to be programmed independently of a model’s shape. 

Additionally, this separation of shape (described with vectors) and volume (described 

with voxels) allows for textures and volumes to be reused in different models, saving 

programming time.  

Because 3D printers produce a volumetric material, it’s not uncommon to 

measure their output resolution in voxels per cubic inch or centimeter. (Fang, S. (n.d.); 

Crassin, C., & Green, S. 2012) Once a resolution is set, an entire physical structure can be 

described by voxels alone. Because of this, it is possible to digitally model structures 

using only a discrete set of voxels. In some instances, it’s possible to dynamically adjust 

the resolution (size) of voxels over a discrete space by using octrees. (Bächer, M., et al. 

2014) 

 

Shaders 

“A shader procedurally defines the appearance of an object to be rendered in 

computer graphics.” (Vidimþe, K. et al. 2013) While a voxel describes how a material 

behaves, and in doing so can indirectly describe the surface appearance, a shader deals 

with the texture (or image) applied to the material, thereby directly affecting the final 

render. 
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Octrees 

A quadtree is capable of creating a reduced position map in 2D space. However, 

an octree is capable of creating a reduced position map in 3D space. (Demmel, J. 1996). 

Rather than taking a square, mapping it to the root of a tree and then subdividing it into 

four squares for each level that is descended, a cube is taken, mapped to the root of a tree 

and then subdivided into four cubes for each level that is descended.  

 
Diagram by Eric Greenberg;  based on work by Demmel, J. 1996. As the octree gains depth, more 

voxels are created through division, resulting in an increased resolution throughout the finite volume of the 
cube. 

 
3D Pipelines 

“3D pipeline” is the general term for whatever system of software and hardware is 

in place to convert digital models into projectable images. 

A fixed-function 3D pipeline is a 3D pipeline that has an unchangeable set of 

provided ways of handling data. (Zhao, Y. 2008a; Zhao, Y. 2008b) 

 A programmable 3D pipeline is one that allows for control over some or all of the 

steps taken in the pipeline. (Wei, L. 2005) This means that it is possible to refine and 

customize the pipeline for specific tasks, allowing for greater speed in the rendering 

process and more complex results.  
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Goal-Based Material Design solution  

 

First we will look at a Goal-Based Material Design solution. 

In 2014 Disney Research Labs designed a series of algorithms that could take a 

3D model and, with minimal visible distortion, print a top that would balance on a fixed 

point when spun. The process that they created could be considered analogous to a fixed-

function 3D pipeline, as it had a set of unchangeable pre-programmed ways of 

manipulating the data that was sent to it in order to produce a specific result. 

The system has the single goal of creating a top from a model with minimal 

distortion, and it achieved this goal through a series of Goal-Based Material Design 

solutions. One of these solutions is a hollowing process that reduces the amount of 

material used during the printing process. The researchers designed this in order to 

control the weight of the tops being produced, but similar algorithms are designed and 

used to reduce material waste, thereby reducing cost. What makes the Disney Research 

Labs’ hollowing solution interesting is that it is capable of adjustable print resolution and 

it is able to preserve sections of material within the hollowed area. 

While considerable preprocessing is done earlier in this “pipeline” before the data 

is passed to the hollowing process, much of it consists of solving physics equations 

related to spinning tops and is beyond the scope of this paper. For brevity, any necessary 

information will be included in brief, as needed. 

The hollowing process is as follows: 
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First, a model is passed from a previous algorithm, where the desired void areas 

have been calculated. At this point, the model has been treated as a region �, and has 

broken down into two parts: the skin of a specified thickness called the boundary shell or 

�b, and the interior area of the model called �i.  

Additionally, the set of all material to be kept has been set during a previous 

process where the internal volume is initially calculated. This is done by marking off the 

areas to be voided, which is a subset of the interior �i referred to as �’ where �’ Ӭ��i 

 

 
Diagram modified from diagrams in Spin-It: Optimizing Moment of Inertia for Spinnable Objects (Bächer, 
M. et al. 2014) 
 

With this data preprocessing done, the hollowing process can start. To accomplish 

this, the adjusted volume, referred to as S�-�’, is reduced into a binary fill variable ȕk 

where ȕk Ѯ {0,1}. In other words, at any given location in the model the corresponding 

ȕk will either be 0 (an area filled with a printed material) or 1 (a void, or an area not filled 

with a printed material). During this reduction process, it becomes clear that the size of 

the voxels can be varied. Where there is a large empty space, there doesn’t need to be a 

high resolution detail of the area inside of the space. In fact, the only time that needs to be 

a high resolution of voxels is when an edge is encountered. (Bächer, M. et al. 2014) This 
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means that the interior can be represented by octree cells as shown below. 

 

Diagram from Spin-It: Optimizing Moment of Inertia for Spinnable Objects (Bächer, M. et al. 2014) 
 

To create this reduction, Disney Research Labs designed the following equation:  

Volume = S�-S�' = S� -  ȕk S�k  

where �i = Ґk S� is a partitioning of the interior into octree cells �k. 

The void space �' would consist of all cells �k where ȕk = 1 (Bächer, M. et al. 

2014) 

In this initial run, the resolution is set at a midpoint between the lowest and the 

highest possible resolutions the 3D printer is capable of. From this point it is possible to 

raise or lower the resolution as necessary.  

 Note that the only time a non-one or none-zero could be detected is on a 

boundary. This is searched for by simply checking each cell for a non-binary result. If 

one is found, it is resolved by increasing the resolution of the voxels in that octree node 

until either the fractional area is gone, or until the highest resolution supported by the 3D 
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printer is reached. If the latter occurs, then the binary numbers can be rounded to either a 

one or a zero. (Bächer, M. et al. 2014)  

 
Diagram from Spin-It: Optimizing Moment of Inertia for Spinnable Objects showing the process of 
increasing the voxel resolution to refine an edge. (Bächer, M. et al. 2014) 

 
Once the resolution has been raised as high as necessary in areas that require 

detail, the areas that do not require detail can be lowered. This is done easily by selecting 

a cell then searching its neighboring cells to see if the binary values are identical. If they 

are, the cells are merged. Once the cells are at the lowest resolution the 3D printer 

supports, the process is terminated. (Bächer, M. et al. 2014) 

The last consideration of the voiding process is how to handle the cells �k that 

overlap with the boundary shell �b . The solution implemented was to simply treat the 

cells touching and overlapping with the boundary as a sub-tree where the boundary must 

be filled (ȕk = 0) at the highest resolution the 3D printer can print. (Bächer, M. et al. 

2014) 

 

 
Diagram from Spin-It: Optimizing Moment of Inertia for Spinnable Objects. This diagram shows the 
process of increasing the voxel resolution to refine an edge. “Cells corresponding to fill variables are 
marked in red, their subtrees in black ” (Bächer, M. et al. 2014) 
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At this point, the Goal-Based Material Design solution for hollowing is complete, 

and the data is sent further down the pipeline for voxelization using an octree-cage 

extraction technique that is beyond the scope of this paper. 

 

Programmable 3D Pipeline Solutions 

 

Now that a Goal-Based Material Design solution for handling the materials in a 

non-programmable 3D pipeline has been covered in detail, it is possible to discuss an 

example of pre-production material handling in a programmable 3D Printing Pipeline. 

This paper will use the OpenFab Programmable 3D Pipeline’s “fablets” as an example. 

The OpenFab pipeline is a potential solution to a number of problems in the realm 

of 3D printing. It can be used with multiple types and brands of 3D printers, allowing for 

reusable code. (Vidimþe, K. et al. 2013) The pipeline results in streamable data, which 

allows for 3D printers to handle smaller, less computationally intensive print jobs. This 

structure also allows OpenFab to perform under memory and computational constraints. 

OpenFab also allows for flexible, programmable, multi-material handling in the 

preprocessing phase using a technique involving “fablets.” Fablets are responsible for the 

surface and volume controls of the material being printed. Essentially, they are in control 

of material layout. Fablets and their implementation will be the focus of this section, 

since much of the programmable OpenFab Pipline is beyond the scope of this paper.  
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Diagram from:  Openfab: A programmable pipeline for multi-material fabrication showing the fablets 
place in the OpenFab Pipeline, positioned where it can control the surface and volume of a printed model. 
(Vidimþe, K. et al. 2013)  

 
A fablet is “a shader like program which procedurally defines surface detail and 

material composition throughout the object volume.” (Vidimþe, K. et al. 2013) They are 

designed to work with additive manufacturing processes, specifically, 3D printers.  The 

purpose of a fablet is to describe the material contents of an object without having to 

describe the object itself. This is done by using a domain-specific, C-like language called 

“OpenFL” to describe both how the volume of the material is to be built using additive 

materials as well as how those materials will interact with a geometry once they are 

applied to a model. This is accomplished by using various keywords in OpenFL to 

describe how to change a material when it is near the surface of a model (“near” being 

defined by the user). This means that unlike a Goal-Based Material Design solution, once 

a fablet is programmed it can detached from specific geometry and reused for other 

models. For example, while the hollowing process described previously was designed to 

avoid hollowing specific sections of a model, these sections were defined automatically 

by the pipeline without user intervention. This means that if the user wanted to have an 

identical hollowing pattern appear in different models, the entire algorithm would need to 

be re-designed. If a hollowing technique were to be implemented with a fablet in 

OpenFab, the structure could be repeated identically across different models. 
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Because they are programmable, fablets can also be designed to mimic Goal-

Based Material Design solutions. An example of this is provided below. 

 
fablet MagicPostcard { 

@uniform { 
float2 border; 
float textureDepth, maxThickness; 
ImageTexture2D fg, bg; 
Material white, black; 

} 
const int CARD_FRONT = 0, CARD_BACK = 1; 
 
@Surface(@varying { 

SurfaceAttributes attr, 
float2 uv, int face, 
out float2 uvOut, out int faceOut 
}) 

{ 
// pass through attributes 
uvOut = uv; 
faceOut = face; 
if (face == CARD_BACK) { 
 // back face 

float L = bg.Sample1(uv(0), uv(1), 0); 
float thickness; 
if (uv(0) < border(0) || uv(0) > 1 - border(0) 

|| 
uv(1) < border(1) || uv(1) > 1 - 

border(1)) f 
thickness = maxThickness; 

} else { 
// material approximation: transmission 
// has quadratic falloff with thickness 
thickness = sqrt(1 - L) * maxThickness; 
} 
return attr.n * thickness; 

} else { 
// no displacement on the front and sides 
return 0; 
} 

} 
@Volume(@varying { 

VolumeAttributes attr, 
@nearest float2 uv, 
@nearest int face 

}) 
{ 

MaterialComposition mc; 
if (face == CARD_FRONT && // front face 

abs(distance(attr.voxelCenter)) 
<= textureDepth) { 

// surface texture 
float L = fg.Sample1(uv(0), 

uv(1), 0); 
mc.Set(white, L); 
mc.Set(black, 1 - L); 

} else { 
// background/border 
mc.Set(white, 1); 
} 

return mc; 
} 

} 
 

 

 

 
Code and images from:  Openfab: A programmable pipeline for multi-material fabrication (Vidimþe, K. et 
al. 2013) showing a fablet coded in OpenFL that takes two inputs – a foreground image (in this example, 
the postcard above) and a background image (not pictured). The fablet then creates a plate using 
displacement on a single axis (see the image below). This sort of process can be repeated using different 
images for input. This creates a structure that has the results one would expect from a Goal-Based Material 
Design solution, but can be fine-tuned by the operator. 
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Images from:  Openfab: A programmable pipeline for multi-material fabrication (Vidimþe, K. et al. 2013) 
demonstrating a repeating hollowing pattern copied from one model and reused on another model. 

 

 
Images from:  Openfab: A programmable pipeline for multi-material fabrication(Vidimþe, K. et al. 2013) 
demonstrating how different fablets can be loaded onto the same model to create different, repeatable 
results. 

 
As seen from the examples above, programmability in a 3D pipeline allows for a 

wide range of material layout solutions. Potentially, a well designed programmable 3D 

pipeline would be able to emulate many Goal-Based Material Design solutions. 

Unfortunately, this would mean the programmers of the Goal-Based Material Design 

solution would have to re-implement the algorithms in whatever domain-specific 

language is being used by the 3D pipeline the solution is being ported into. This may not 

always be palatable, as authoring tools for various stages in 3D pipelines, like OpenFab, 
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were still in development as of 2013. (Vidimþe, K. et al. 2013) This could mean that the 

operator would have to learn a new programming language native to each pipeline. 

Additionally, Goal-Based Material Design solutions can be small and precise while a 3D 

printing pipeline can be quite large and only as precise as its adjustments allow it to be, 

meaning that there is a time and a place for each type of solution. 

 

Summary 

 

As stated before, it is becoming important to design software to control the way 

3D printer materials are handled in order to address limitations such as physics, cost and 

other constraints that may not be immediately apparent to the 3D printer’s operator. 

Preproduction material layout controls are a way to address these issues. Two kinds of 

preproduction material layout control methods in the 3D printing pipeline are Goal-Based 

Material Design solutions and Programmable 3D Pipelines. Goal-Based Material Design 

solutions generally involve software that takes models and manipulates them to meet 

certain specifications or constraints (Vidimþe, K. et al. 2013), whereas Programmable 3D 

Pipelines can use fabrication languages to precisely control the layout of a material 

throughout a printed volume. (Chen, S. et al. 2013) Both methods have advantages that 

can make them appealing to programmers and 3D printer operators alike.  

In the grand scheme of technology, 3D printers have been around for a relatively 

short amount of time, but have still managed to make made fantastic gains in 

technological advancements. The future of this technology is still under development, 

and promises to continue to advance in new and splendid ways.  
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