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Introduction

A classic problem in database management is the development of efficient and 

effective methods for retrieving information from multiple heterogenous resources.  

Heterogeneity arises as a result of a number of factors, including storing databases in 

different formats, using different hardware and operating systems for database storage 

systems, and designing databases with different data models, schemas, and semantics 

customized to intended applications and to the preferences of database designers 

(Katsis & Papakonstantinou, 2009; Ziegler & Dittrich, 2004).  The field of data 

integration focuses on developing solutions to the challenges associated with deriving 

valuable information from collections of databases in which participant resources 

possess highly dissimilar designs.  The need for data integration originated in the early 

1980s when business enterprises began investigating the possibility of integrating 

database resources for more efficient access and utilization (Ziegler & Dittrich, 2004).  

As Alon Halevy, a database research scientist at Google Inc., Anand Rajaraman, a 

highly successful technology entrepreneur, and Joann Ordille, a database research 

scientist at Avaya, observe in their overview of data integration innovations, “Data 

integration is crucial in large enterprises that own a multitude of data sources, for 

progress in large-scale scientific projects, where data sets are being produced 

independently by multiple researchers, for better cooperation among government 

agencies, each with their own data sources, and in offering good search quality across 

millions of structured data sources on the World-Wide Web” (Halevy, Rajaraman, & 

Ordille, 2006).  Accordingly, data integration problems represent enduring issues with 

widespread applicability.
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Since databases often reflect application specifications and designer preferences 

(Doan, Halevy, & Ives, 2012), database schemas generally possess a degree of 

uniqueness.  As a result, the task of querying over a collection of heterogenous 

resources requires considering data outside the specialized context of specific 

databases and combining the results into a standardized form.  View-based data 

integration provides a popular framework for integrating resources modeling structured 

data and transforming query results from local database formats into a single 

homogeneous view (Katsis & Papakonstantinou, 2009). The view-based method 

focuses upon removing queried data from local contexts, called “source” or “local” 

schemas, and combining and portraying the query results in a unified view, called the 

Figure 1. A data integration system utilizing the 
view-based approach and illustrating the 
conceptual location of schema mapping design 
systems within a complete data integration 
system.  Image modified from (Katsis & 
Papakonstatinou, 2009)
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“target” or “global” or “mediator” schema.  Wrappers on the original database resources 

portray source data using the data model of the target schema (Katsis & 

Papakonstantinou, 2009).  The process resolves heterogeneity issues related to data 

model disparities by ensuring all data sources share the same data model.  For 

example, if a global schema uses a relational data model and the data integration 

system uses an XML data source, a wrapper program portrays the XML data in terms of 

a relational model compatible to the target data model.  As Figure 1 illustrates, original 

databases become “local” (also referenced as “source”) databases as a result of the 

wrapping process.  The process of connecting the local schemas to the “mediator” (also 

referenced as “target”) schema is called schema mapping, more formally defined as “a 

specification of the relationship between a source schema and a target schema” (Alexe, 

ten Cate, Kolaitis, & Tan, 2011).  

Figure 2.  A screen shot of a schema mapping in Microsoft 
BizTalk Mapper.  Image from (Block, 2008).
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The advent of schema mapping resulted in the creation of three mapping 

languages reflecting the major categorizations of schema maps, namely Global-As-

View, Local-As-View, and Global-And-Local-As-View.  Global-As-View (GAV) produces 

schema mappings by defining the global schema as a function of the local schemas.  

Since the complete set of possible tuples modeled by the global schema contains only 

information defined in local schemas, the global schema is unique and renders query 

response derivations trivial.  However, GAV systems do not easily facilitate the addition 

of new local resources because the addition of new sources requires rewriting the 

global schema to incorporate the new local schema semantics.  In contrast, Local-As-

View (LAV) produces schema mappings by defining the local schemas as a function of 

the global schema.  The flexibility of the LAV definition renders the exact process of 

semantic representation and data retrieval in LAV systems open to many possible 

algorithmic solutions and remains an active field of research.  The Global-And-Local-As-

View (GLAV) approach represents a generalized form of GAV and LAV.  GLAV maps 

queries over the local schemas into queries over the global schema.  Accordingly, GLAV 

systems can create schema mappings using exclusively GAV or exclusively LAV or 

combine the capabilities of both languages to generate schema mappings beyond the 

capabilities of either language individually.  As a result, the combined system avoids 

many of the disadvantages associated with GAV and LAV and enjoys the advantages or 

both, though the complexity of the overall system increases significantly (Katsis & 

Papakonstantinou, 2009).

A major challenge associated with the derivation of schema mappings is 

establishing a high degree of semantic accuracy.  Current software solutions rely upon 
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automatic and semi-automatic algorithms for deriving schema maps given a collection 

of local databases.  Some implementations utilize target schema matching systems to 

correctly guess the most obvious maps between local and target schemas.  However, 

an overriding characteristics of current schema mapping system implementations, 

exemplified by packages such as Clio, HePToX, Stylus Studio, and Microsoft BizTalk, 

rely heavily upon human interactions.  As illustrated in Figure 2, The generally adopted 

methodology requires users specify visual connections between source schemas and 

target schemas to help the schema mapping design software create maps capturing 

relationships close to the actual source-to-target semantic translations.  However, 

schema mappings derived from visual specifications often detail only a subset of the 

semantics necessary to create accurate schema mappings, especially since the same 

visual specification may correspond to many logically divergent schema maps (ten 

Cate, Kolaitis, & Tan, 2013).  Accordingly, such software requires users pursue the 

difficult and time-consuming task of manually editing the generated schemas to 

resemble the intended semantics as closely as possible.

The necessary reliance upon manual editing to ensure the accuracy of maps 

generated by visually interactive schema mapping design systems inspired research 

into alternative approaches, such as example-driven and semantic methods, utilizing 

more rigorous map definition paradigms.  The example-driven approach to schema 

mapping establishes relationships between source and target schemas through the 

generation and confirmation of a collection of data examples illustrating accurate 

source-to-target semantic translations.  On the other hand, the semantic schema 

mapping approach explores the inclusion of detailed conceptual models of the source 
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and target semantics as additional input to schema mapping algorithms.  The example-

driven and semantic approaches represent promising alternatives to current visually 

interactive methodologies. 

Example-Driven Schema Mapping

The example-driven approach to schema mapping establishes relationships 

between source and target schemas through the generation and confirmation of a 

collection of data examples illustrating accurate source-to-target semantic translations.  

Data examples represent “pair[s] of source and target instances that conform [to] the 

source and target schemas” (ten Cate et al., 2013).  The utilization of data examples to 

guide mapping designs illuminates a problem regarding the best method for 

generalizing examples into actual mapping expressions.  The process of generating a 

schema mapping according to a set of data examples introduces a class of “Fitting 

Problems” focusing upon the derivation of schema mappings based upon a set of 

universal data examples in which target instances represent universal solutions for 

source instances (ten Cate et al., 2013).  A corresponding class of “Fitting algorithms” 

detail the steps necessary to derive schema mappings which produce schema 

mappings with respect to the constraints of the GLAV or GAV mapping languages (ten 

Cate et al., 2013).  An illustration of the example-driven schema mapping approach 

describes the interpretation of doctor and patient information in scattered source 

databases within the context of a target database consolidating the information in a 

standardized global format.  Ultimately, the performance of schema mapping design 

systems utilizing the described example-driven fitting approach yields exponential 

complexity for GLAV constraints.
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Fitting Problems and Algorithms

Fitting problems address algorithmic questions associated with deriving accurate 

schema maps from a collection of data examples conforming to supplied source and 

target schemas.  The class of problems encompasses two sub-categories, namely fitting 

decision problems and fitting generation problems.  Given source and target schemas 

and a set of data examples conforming to the schemas, fitting decision problem 

solutions determine whether schema mappings exist (Alexe et al., 2011).  Solutions to 

fitting generation problems extend the fitting decision definition by either constructing 

valid schema maps or reporting no such maps exist for given source and target 

schemas and a data example collection (Alexe et al., 2011).  

Alex et al. describe fitting algorithms for practical applications using GLAV and 

GAV mapping language constraints (2011).  The fitting generation problem adhering to 

GLAV constraints is co-NP, while the fitting generation problem adhering to GAV 

constraints is DP-complete, or coNP-complete for special cases of data examples.  

Figure 3.  GLAV Fitting Generation Algorithm.  
Image from (Alexe et al., 2011).
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GLAV Fitting Generation.  Figure 3 details the steps of the GLAV fitting 

generation algorithm.  Given a source schema S, a target schema T, and a set of data 

examples conforming to both S and T {(I1, J1), …, (In, Jn)}, where n is a finite integer, the 

algorithm first solves the GLAV fitting decision problem and, if an appropriate GLAV 

schema mapping exists, subsequently constructs the GLAV schema mappings 

conforming to the given set of data examples (Alexe et al., 2011).  The homomorphism 

extension test of the algorithm in Figure 3 encompasses the fitting decision solution.  A 

homomorphism (h) is a function between two resources preserving the operations of 

both resources (Conrad, n.d.).  A homomorphism (ˆh) extends another homomorphism 

(h) if ˆh(b) = h(b) for all b, where b is in the set of all values occurring in the union of 

instances I and J (Kolaitis, 2009).  The outer for-loop scans all possible combinations of 

data examples against test the inner for-loop, which compares each i source instance 

with each j source instance for a homomorphism and each i target instance with each j 

target instance for a homomorphism.  The if-statement fails if the homomorphism 

between Ji and Jj does not preserve the operations of the Ii and Ij homomorphism.  In 

other words, the homomorphism extension test determines whether any of the data 

examples fail to conform to the rules of both the source and target schemas.  If so, no 

schema mappings exists for the set of data examples.

GAV Fitting Generation.  Figure 4 details the steps of the GAV fitting generation 

algorithm.  GAV fitting occurs in three steps: (1) test each data example for ground 

status, (2) solve the fitting decision problem, and (3) create the GAV schema mapping.  

A ground data example is a data example (I, J) in which all the values in the target 

instance J are values appearing in source instance I.  The definition aligns with the 
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definition of GAV requiring the construction of the target schema as a function of source 

schemas.  The first for-loop determines if any data example defies the definition of GAV.  

If so, no schema mapping exists for the data example set.  The second for-loop 

determines if all Ji and Jj homomorphisms preserve the operations from the Ii and Ij 

corresponding homomorphism.  If not, then no schema mapping exists for the data 

example set.  The final for-loop creates the set of schema maps according to the given 

data examples. 

Figure 4.  GAV Fitting Generation Algorithm.  
Image from (Alexe et al., 2011).



SCHEMA MAPPING DESIGN SYSTEMS �11

Example

Step 0:  User inputs source and target Schemas.  Note the convenient 

consistency between field labels and table semantics in the given schemas is not 

guaranteed in practice.

Step 1:  User defines a data example (I, J) in which the source instance 

I: Patient(123, Joe, Plus, Jan), Doctor(123, Anna) 

corresponds to 

J: History(123, Plus, Jan, Anna). 

Software interprets the resulting schema mapping as

{ Patient(x, y, z, u) AND Doctor(x, v) } —> { History(x, z, u, v) }, 

Figure 5.  GLAV Schema mapping using 
examples. Image and example from (Alexe et 
al., 2011).

Source Schema Target Schema

Patient(pid, name, healthplan, date) History(pid, plan, date, docid)

Doctor(pid, docid) Physician(docid, name, office)
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or, equivalently, “For every tuple (x, y, z, u) in the Patient relation, if the Doctor relation 

contains a tuple (x, v), then the History relation in the global schema includes the tuple 

(x, z, u, v)”.

Step 2:  User chooses to refine the data example in Step 1 to generalize the 

schema mapping to include both target relation schemas.  

I: Patient(123, Joe, Plus, Jan), Doctor(123, Anna)

corresponds to 

J:  History(123, Plus, Jan, N1), Physician(N1, Anna, N2),

where N1 and N2 are not defined in the local schemas.  Software interprets the 

modified schema mapping as

{ Patient(x, y, z, u) AND Doctor(x, v) } —> 

{ ∃w, w’ ( History(x, z, u, w) AND Physician(w, v, w’) ) },

or, equivalently, “For every tuple (x, y, z, u) in the Patient relation, if the Doctor relation 

contains a tuple (x, v), then the History relation in the global schema includes the tuple 

(x, z, u, w) and the Physician relation includes the tuple (w, v, w’), where w and w’ 

represent unknown or different values”.

Step 3:  User attempts to add another data example.

I: Doctor(392, Bob)

corresponding

J:  Physician(Bob, 392, N3),

where N3 is not defined in the local schemas.  Software interprets the modified schema 

mapping as invalid because the resulting map is inconsistent with the mapping 

established by the data example in Step 2.  The resulting mapping is:
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{ Doctor(i, j) } —> { ∃k ( Physician(j, i, k) ) }

or, equivalently, “For every tuple (pid, docid) in the Doctor relation, if the Doctor relation 

contains a tuple (i, j), then the Physician relation in the global schema includes the tuple 

(j, i, k), where k represents an unknown or different value”.  The Step 3 mapping defies 

the Step 2 mapping by (1) insisting every tuple in physician contains a docid, pid 

combination appearing in a local database and (2) copying pid into the second field of 

the Physician relation instead of docid.  Since the second map does not preserve the 

homomorphism established by the first map, the GLAV system concludes no schema 

mappings exist (“fit”) for the set of two data examples.  

Step 4:  User adds two additional data examples

( I: Doctor(392, Bob), J:  Physician(N3, Bob, N4) )

and

( I: Patient(653, Cathy, Basic, Feb), J:History(653, Basic Feb, N5) )

with the resulting valid maps

A.  { Doctor(x, y) } —> { ∃w, w’ ( Physician(w, y, w’) ) }

and 

B.  { Patient(x, y, z, u) } —> { ∃w ( History(x, z, u, w) ) }

The resulting maps are valid because A represents a stronger version of the Step 

1 schema mapping and establishes every doctor in the source Doctor relation appears 

in the target Physician relation. Also, B represents a stronger version of the Step 1 

schema mapping by establishing every patient in the source Patient relation possesses 

a medical history in the target History relation.
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Analysis

The nested for-loops in the homomorphism extension tests in both the GLAV and 

GAV Fitting Algorithms for the software to scan the entire collection of data examples for 

each data example in the collection.  If a data example collection consists of N 

examples, then the algorithm scans each example N times.  As Alexe et al. observe, 

“the homomorphism extension test […] involves a universal quantification over 

homomorphisms followed by an existential quantification over homomorphisms: this is a 

[coNP]-computation” (Alexe et al., 2011).  Accordingly, the Fitting Decision Problem, 

manifested in the algorithm as the universal-existential homomorphism extension test, 

possesses a coNP-complete worst-case complexity, meaning no quick solutions exist 

for deriving schema maps using the GLAV or GAV algorithms.  However, despite the 

worst-case complexity of the fitting decision algorithm, implementations of the example-

driven GLAV schema mapping system yield feasible performance in response to 

practical real-life applications represented by common schema mapping design system 

benchmark tests utilized by both visually-based schema mapping software, such as 

Clio, and by the semantic schema mapping software examined in the next section 

(Alexe et al., 2011).  Accordingly, the example-driven schema mapping approach 

represents a promising alternative to current visually interactive solutions by allowing 

users the power to guide the schema mapping generator using descriptive illustrations 

of source-to-target semantic translations via concrete examples.

Semantic Schema Mapping

The semantic schema mapping approach provides detailed conceptual models of 

the semantics of source and target schemas as input.  Conceptual models (CMs) 
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provide high-level details regarding structures, field choices, and relationships between 

data tables in a database schema (Ramakrishnan & Gehrke, 2003; Embley & Mok, 

n.d.).  Conceptual modeling languages (CMLs) such as the Entity-Relationship (ER) 

Model and the Unified Modeling Language (UML) offer formal notation standards for 

depicting conceptual models.  CMLs accordingly capture the semantics of a database in 

the form of graphs connecting nodes representing database relations (An, Borgida, 

Miller, & Mylopoulos, 2007).  As illustrated in Figure 6, CML depictions of database 

semantics facilitate the development of corresponding database schemas.  The figure 

shows an example ER model for a hotel reservation database with the corresponding 

schema translation.  The rectangles represent entities within the database and 

diamonds represent relationship sets.  The rectangles and diamonds may manifest in 

the database as individual tables or merged tables, depending upon factors such as 

participation constraints.  Ovals connecting to rectangles and diamonds are entity 

attributes corresponding to fields in the database.  Ovals with underlined labels indicate 

the attribute represents a key or partial key for the associated table, a value or set of 

Figure 6.  A ER CM translated into a 
database schema.  Image from (Embley & 
Mok, n.d.).
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values capable of uniquely identifying each tuple of data (Ramakrishnan & Gehrke, 

2003).  

The semantic approach utilizes the ability of CM graphs to directly describe the 

semantics of a database as a tool for generating schema maps between heterogenous 

databases.  The semantics of a table described in CM subtrees, referenced as 

“semantic trees” by An, Borgida, Miller, and Mylopoulos, represent the basis of the 

semantic approach (An et al., 2007).  The approach attempts to identify similarities 

between semantic trees, also called “conceptual subgraphs” (CSGs) in the CMs of the 

Algorithm 1:  Known Target CSG
Input:  Source CM S, Target CM T,

Set of pre-defined semantic trees in S and T,
Set of pre-defined node correspondences 
      between S and T,
Known CSG in T.

Output:  A set of LAV schema mappings

1. Determine the qualities and characteristics of the 
CSG in T.

2. Use S and T node correspondences to find a 
node structure in source semantically similar to 
the node structure of the given target CSG.

3. Construct the semantically similar source node 
structure corresponding the the target CSG using 
minimal cost functional paths.

4. Derive LAV schema mapping expressions 
between the semantically similar source and 
target CSGs by expressing the CSGs as queries 
over predicates encoding the characteristics of the 
corresponding CMs.

5. Output the set of schema mappings.

Figure 7.  Semantic approach algorithm for 
deriving a set of schema mappings when a 
target CSG is known.
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source and target schemas.  After translating the CSGs into algebraic expressions, the 

algorithm derives LAV schema mappings using an efficient query rewriting method.

Algorithms

The semantic approach consists of two major algorithms encompassing two 

major cases relating to whether or not the target schema possesses known CSGs.    

The starting point for the semantic approach is the identification of a CSG in the target 

schema.  The CSG defines an essential set of semantics to maintain within the set of 

derived schema mappings.  In Algorithm 1, detailed in Figure 7, properties of the known 

target CSG guide the discovery of a semantically similar CSG in the source schema.  

The translations between the source and target CSGs provide the basis for developing 

the set of LAV schema mapping outputs.  On the other hand, if a target CSG is not 

known, Algorithm 2, described in Figure 8, pursues connections between given 

semantic trees within the target and source schemas allowing the construction of CSGs 

Algorithm 2:  Unknown Target CSG
Input:  Source CM S, Target CM T,

Set of pre-defined semantic trees in S and T,
Set of pre-defined node correspondences 
      between S and T.

Output:  A set of LAV schema mappings

1. Construct a set of target CSGs by connecting 
pre-defined semantic trees in T using minimal 
cost functional paths.

2. Construct a set of source CSGs by connecting 
pre-defined semantic trees in S using minimal 
cost functional paths.

3. Proceed using Algorithm 1.

Figure 8.  Semantic approach algorithm for 
deriving a set of schema mappings when a 
target CSG is not known.
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and the subsequent discovery of semantically similar CSGs according to Algorithm 1.  

The utilization of minimal cost functional paths during the construction of CSGs 

represents an essential aspect of the algorithms because the functional properties of 

conceptual models correlate directly to functional dependencies within the schemas (An 

et al., 2007).  The minimal cost paths align with the Occam’s Razor principle asserting a 

default preference for the simplest solution in situations where multiple equivalent 

solutions exist  (An et al., 2007; Gibbs & Hiroshi, 1997).

Example

Figure 9 details a set of simple source and target schemas with entities, 

attributes, and relationships.  The source schema contains three entities each with a 

single attribute connected other attributes by at least one relationship.  The target 

schema likewise contains three attributes with associated entities and connective 

relationships.  The semantic schema mapping algorithm inputs the conceptual models 

for the source and target schemas.  The simplicity of the example renders the graph 

connecting the Proj, Dept, and Emp entities in the target a semantic tree and CSG by 

Figure 9.  Source and target CSGs with entity 
correspondences.  Image from (An et al., 
2007).
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default.  Accordingly, the example aligns with the procedure detailed in Algorithm 1.  V1, 

V2, and V3 represent known correspondences between source and target nodes.

Step 1:  The algorithm begins by analyzing the properties of the target schema 

CM.  Specifically, the target CSG is an anchored semantic tree, meaning the single 

table corresponding to the CSG derives from a single root object (“anchor”), namely the 

Proj node (An et al., 2007).  

Step 2:  Source and target node correspondences provided as input guide the 

discovery of a node structure in the source semantically similar to the root node 

structure of the given target CSG.  Since the V1 correspondence links the Project 

source node with the Proj target node, the algorithm concludes the source may contain 

a corresponding CSG.

Step 3:  Constructing the semantically similar source node structure creates a 

graph linking the Project node to every other node with a defined correspondence to a 

target node using functional paths between source nodes minimizing the number of 

edges not located within a defined source semantic tree.  Accordingly, the example 

trivially identifies the Project—>Department—>Employee semantic tree as a source 

CSG corresponding to the target CSG.

Step 4:  Deriving LAV schema mapping expressions between the source and 

target CSGs enters the realm of active research focused upon query rewriting.  The 

process requires expressing the CSGs in the source and target schema as separate 

algebraic expressions (An et al., 2007).  The LAV schema mapping emerges from the 

translation of queries over the algebraic expression predicates encoding the 
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characteristics of the corresponding CSGs.  Exhaustive representations of the source 

and target CSGs as datalog expressions are (An, Borgida, & Mylopoulos, 2005):

Table: Proj(pid, did, eid) :- Ontology: Proj(pid), Ontology: hasDept(pid, 

did), Ontology: hasSup(pid, eid), Ontology: Emp(eid), Ontology: 

Dept(did)

Table: Project(pid, did, eid) :- Ontology: Project(pid), Ontology: 

controlledBy(pid, did), Ontology: Department(did), Ontology: 

hasManager(did, eid), Ontology: Employee(eid)

Exact mapping expressions depend upon LAV implementations.

Step 5:  Output the set of schema mappings.

Analysis

The semantic approach to schema mapping represents a promising alternative to 

current visually interactive methods.  Prototype software implemented in the MapOnto 

package developed by An et al. demonstrate the viable performance of the semantic 

schema mapping generation algorithms in response to practical real-life applications 

(2007).  The team ran the prototype implementation on a number of benchmark data 

integration problems utilized to test both major visually interactive schema mapping 

tools such as Clio and software implementations of the example-driven approach.  In all 

cases, the semantic schema mapping design system produced a manageable number 

of schema mappings for the user to examine and verify within a time frame of less than 

1 second (An et al., 2007).
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Conclusion

Data integration problems represent enduring issues with widespread 

applicability.  Schema mapping represents a key field of research in data integration 

because different data resources often possess high degrees of heterogeneity, 

especially as a result of customizing database semantics for specific applications.  

Current view-based methodologies rely upon visual interactions with users to guide 

schema mapping designs.  However, the heavy reliance upon time-consuming and 

intricate procedures necessary to manually edit generated schema maps to improve 

semantic accuracy inspired the development of example-driven and semantic methods 

utilizing more rigorous mapping paradigms.  The example-driven approach to schema 

mapping establishes a collection of data examples guiding schema mapping systems 

toward accurate source-to-target semantic translations.  Semantic schema mapping 

provides conceptual models of source and target semantics to derive accuracy in 

schema mapping algorithms.  Both approaches offer effective paradigms rejecting 

visually interactive methods currently dominating schema mapping design systems.  

The techniques provide users with interaction mechanisms supporting higher-quality 

control over mapping designs.  In both the example-driven and semantic approaches, 

software implementations output a manageable number of schema mappings for the 

user to verify and modify as necessary.  The example-driven approach solicits a small 

number of example correspondences from users to guide schema mapping designs.  

The semantic approach requires inputing conceptual models of source and target 

schemas by interpreting expressions in a CML and utilizing the resulting semantics to 

create accurate schema maps.  Both example-driven and semantic approaches offer 
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viable performance in practical applications.  While the example-driven approach 

provides exponential worst-case complexity, the theoretical limit does not impede the 

performance of software implementations in practice.  Likewise, the semantic approach 

possesses efficient user input procedures and rapid results for practical applications 

simulated by common schema mapping design system benchmarks.  Accordingly, 

example-driven and semantic approaches to schema mapping represent effective 

paradigms rejecting the reliance upon visual user interactions. 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