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Introduction 

 Finding the shortest path between a starting point and end point has many 

algorithmic solutions, but as demands for the shortest path move from static to dynamic 

environments, these algorithms have needed to become more complex. This paper will 

address the algorithms used in this pathfinding, starting with Dijkstra’s  Algorithm,  and 

expanding on Dijkstra the A* algorithm, Dynamic A* (D*) algorithm, and the Anytime 

Dynamic A* (AD*) algorithm. The core of this paper will focuses on Dynamic A* and 

Anytime Dynamic A*, before wrapping up with software-based solutions for pathfinding 

in environments called Navigational Meshes (Kallman & Kapadia, 2014).  

 

History 

 Finding the shortest path is a well-known problem in Computer Science, but it is 

by far not a new problem for humanity. From the shortest paths of trade routes, to the 

shortest routes to ship cargo by, the shortest path problem has been the focus of 

mathematical research long before computers were ever able to be utilized (Schrijver, 

2010). Matrix methods were developed in 1946 for their applications to communication 

networks, and shortly after shortest-length paths were addressed by Bellman-Ford and 

Dijkstra in 1956 and 1959, respectively (Schrijver, 2010). In recent years, the shortest 

path problem has had to contend with the complexities of the real world through 

robotics, and the virtual world via video games and simulations. 



Algorithms Used in Pathfinding and Navigation Meshes 2 

 
 

Dijkstra’s  Algorithm 

 Dijkstra’s  algorithm requires a connected graph where all edges have non-

negative weights. A node is selected to be the starting point and is initialized to a 

distance of zero, and all other nodes’  tentative  distances to infinity. The nodes are then 

traversed, starting from the source node, expanding outward to the next node of the 

lowest tentative distance. All of the connected unvisited neighbors from the current node 

have their distances calculated by: Distance to current node + Distance from current 

node to neighbor. If the value returned is  less  than  the  node’s  current  tentative  distance,  

it replaces the value with the lesser one. All nodes are initialized to infinity to ensure 

discovery by the algorithm. The algorithm continues through the weighted graph, 

updating the distances of unvisited nodes when needed, adding nodes to the visited set 

once all of its neighbors have been considered. This continues until the goal node is 

reached and added to the visited set. Once the goal node has been added to the visited 

set, the shortest path from the source node to the goal has been found. 

 

Figure 1: The Euclidean Shortest Path between two points inside a triangulated simple polygon. (Kallman 
& Kapadia, 2014, p.2) Start and endpoints are placed within the polygon, the red line between is the ESP. 
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Concepts and Terminology: Basic Visual Representations 

 The first concept that is important in understanding visualizing pathfinding are the 

Euclidean Shortest Paths (ESPs). These paths, when no shorter path exists, are 

globally optimal and show the shortest path between two points (Kallman & Kapadia, 

2014, p.1). As shown in Figure 1, this can be simply shown when obstacles in an 

environment are reduced to a simple polygon, with the start and endpoints located 

within the bounds of the polygon. The ESP is shown in red between the two points. 

 

 Figure 2: “The  Euclidean  shortest  path  between  p  and  q  can  be  found  by  searching  the  visibility graph of S (top-

left) augmented by the edges connecting all visible vertices to p and q (top-right). The [middle] diagrams show the 

added edges connecting the visible vertices to p and q.” (Kallman & Kapadia, 2014, p.2)The bottom diagrams are 

popular optimizations on visibility graphs, discarding the edges that lead to non-convex vertices both in processing 

the environment (bott-left) and with source and destination points (bott-right). (Kallman & Kapadia, 2014, p.3). 
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 The simple polygon representation of Figure 1 is misleading, as the generic case 

in finding Euclidean shortest paths often includes multiple corridors and exits (Kallman 

& Kapadia, 2014, p.2). These multiple corridors and exits are multiple routes that need 

to be considered by the algorithm to reach the endpoint. A visibility graph, as shown in 

Figure 2, is a graph of the set S of all polygonal obstacles existing in some space, and is 

composed of all segments connecting vertices that are visible to each other in S 

(Kallman & Kapadia, 2014, p.2). As shown in Figure 2, the obstacles (in red) block the 

path between points p and q, with augmented edges (in blue) providing multiple paths 

around these obstacles. Thus, after these edges connecting the visible vertices are 

established, graph search algorithms such as Dijkstra and A* can then be applied to the 

visibility graph to find the Euclidean shortest paths from p to q.  

 

The A* Algorithm 

A* is a Dijkstra variant that uses a heuristic cost function h to progress faster towards 

the endpoint q without lessening  the optimality of the solution (Kallman & Kapadia, 

2014, p.3). The heuristic cost h is 

the “cost-to-go”, which unlike 

distance traveled so far (g), is 

often implemented as distance to 

the endpoint. This is superior to 

Dijkstra due to the fact that A* 

takes into account both the 

distance traveled, and the distance Figure 3: The A* Algorithm (Kallman & Kapadia, 2014, p.3) 
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left to reach the goal node (Kallman & Kapadia, 2014, p.3). This lets A* favor nodes 

closer to its goal, rather than expanding outwards to the next node of the lowest 

tentative distance.  

Dijkstra’s  algorithm  is  guaranteed  to  find  the  shortest  path  possible,  but A* is far 

faster at finding a path to the goal node. This means that A* is better for real-time 

pathfinding, due to its speed. It still runs into issues with real-world pathfinding 

problems, due to the ever-changing conditions present within dynamic environments, 

needing to recalculate its entire path when new information is received.  

 

Figure 4: The medial axis (left) represents points of maximum clearance. This can be decomposed, 

such that each edge is associated to its closest pair of obstacle elements (right). (Kallman & Kapadia, 

2014, p.4). 

 

The Medial Axis 

Visual graphs have one key issue: they fail to address constraints that a 

pathfinding object may have. Such a key constraint could be clearance between the 

object and its obstacles. These constraints are taken into account by spatial partitioning 



Algorithms Used in Pathfinding and Navigation Meshes 6 

 
 

structures (Kallman & Kapadia, 2014, p.4), such as Voronoi diagrams and with medial 

axis, as show in in Figure 4. These paths shown by the medial axis may not be 

Euclidean shortest paths, but in trade-off naturally allows the integration of clearance 

constraints (Kallman & Kapadia, 2014, p.4). The medial axis approach allows for 

algorithms to find the best locally shortest path for an object quickly; thus path can then 

be easily interpolated towards the medial axis in order to reach maximum clearance 

when needed (Kallman & Kapadia, 2014, p.4). 

 

Dynamic and Anytime Algorithms: Overview 

 Path planning for the real world involves dealing with an inherently uncertain and 

dynamic place; models are difficult to obtain and quickly go out of date and time for 

deliberation is often very limited (Likhachev et al. 2005, p.1). Thus, replanning 

algorithms are needed to correct precious solutions on updated information in this ever-

changing, dynamic environment. In addition to dynamic environments, when a pathing 

problem is complex, the optimal solution may not be able to be found within the 

deliberation time (Likhachev et al. 2005, p.1). Anytime algorithms aim to address this 

issue by finding a suboptimal solution quickly, and then improve upon this solution until 

time for planning is exhausted (Likhachev et al. 2005, p.1). The interesting issues in 

modern pathfinding are both the dynamic and complex. Robotics, for example, run into 

path planning problems that both require replanning, and need to find a solution within a 

limited timeframe. Thus, an anytime and dynamic algorithm is required in order to solve 

these modern-day problems. Before joining dynamic and anytime approaches, the 

dynamic expansion on A* will be discussed. 
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Figure 5: D* Lite Algorithm. (Likhachev et al. 2005, p.3) 

 

 

Dynamic A* (D*) and D* Lite 

 The dynamic expansion for A* is called Dynamic A*, or D* for short. Dynamic A* 

aims to be able to replan its optimal path when new information arrives (Likhachev et al. 
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2005, p.1), thus being able to address dynamic environments. Dynamic A* is a popular 

choice for a replanning algorithm, and has been shown to be up to two orders of 

magnitude more efficient than A* replanning from scratch, when new information is 

received (Likhachev et al. 2005, p.2). Dynamic A* is optimized further into D* Lite, and 

since these two are fundamentally similar, D* Lite will be covered since it has been 

found to be slightly more efficient than Dynamic A* (Likhachev et al. 2005, p.2).  

 “D* Lite maintains a least-cost path from a start state 𝑠௦௧௔௥௧ ∈ 𝑆 to a goal state 

𝑠௚௢௔௟ ∈ 𝑆, where S is the set of states in some finite state space”  (Likhachev et al. 2005, 

p.2). D* does this by storing the cost from each state s to the goal in g(s), and stores a 

one-step lookahead cost rhs(s) which satisfies: 

𝑟ℎ𝑠(𝑠) = ቊ 0
𝑚𝑖𝑛௦ᇲ∈  ௌ௨௖௖(௦)(𝑐(𝑠, 𝑠ᇱ) +   𝑔(𝑠ᇱ))௢௧௛௘௥௪௜௦௘,

௜௙  ௦  ୀ  ௦೒೚ೌ೗ �  where 𝑆𝑢𝑐𝑐(𝑠) ∈ 𝑆 denotes 

the set of successors s and c(s,s’) denotes the cost of moving from s to s’, the arc cost 

(Likhachev et al. 2005, p.2). Any number of goals can be incorporated, and in such a 

case, 𝑠௚௢௔௟ is the set of goals. The state is called consistent if the cost to the goal, g(s), 

is the same as the one-step lookahead cost rhs(s). Consistent states are unchanged, 

while overconsistent (if 𝑖𝑓  𝑔(𝑠) > 𝑟ℎ𝑠(𝑠)) or underconsistent states are in need of 

updating. The algorithm also utilizes a priority queue that helps it to focus its search and 

run more efficiently (Likhachev et al. 2005, p.2). The priority (key value) of a state s in 

the queue is (Likhachev et al. 2005, p.2): 

𝑘𝑒𝑦(𝑠) = [𝑘1(𝑠), 𝑘2(𝑠)]
= ൣmin൫𝑔(𝑠), 𝑟ℎ𝑠(𝑠)൯ +   ℎ(𝑠௦௧௔௥௧, 𝑠),min൫𝑔(𝑠), 𝑟ℎ𝑠(𝑠)൯൧ 
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The algorithm restricts its attention to the relevant paths, and thus ensures that a least-

cost path will have been found when the algorithm has finished (Likhachev et al. 2005, 

p.3). 

 

Figure 6: Anytime Dynamic A* algorithm: Typical modern implementation (Kallman & Kapadia, 2014, 

p.8). 

 

 



Algorithms Used in Pathfinding and Navigation Meshes 10 

 
 

Anytime Dynamic A* (AD*) 

 The Anytime expansion on Dynamic A* is Anytime Dynamic A*. The algorithm is 

an expansion on D*, aiming to help solve the problem D* has in a time-constrained 

environment. Anytime algorithms must be satisfied with their solution to a pathing 

problem by the end of their allotted computing time since real-world scenarios, such as 

those faced in drones and robotics, do not have unlimited time to sit and completely 

calculate out the globally optimal solution after each step (Likhachev et al. 2005, p.3). 

 The algorithm shown in Figure 6 is the typical implementation of Anytime 

Dynamic A* found today (Kallman & Kapadia, 2014, p.8). AD* works just as D* Lite 

above, but unlike D* Lite, instead of processing all inconsistent nodes only those whose 

costs are beyond the inflation factor 𝜖 are expanded (Kallman & Kapadia, 2014, p.8). 

The algorithm performs an initial 

search by expanding each state once 

(𝜖଴), while keeping track of already 

expanded nodes that have become 

inconsistent due to changes in their 

neighbors, inserting these inconsistent 

nodes into an INCONS list. If there are 

no world changes to create 

inconsistent nodes, decrease 𝜖 

iteratively, improving path quality until 

an optimal solution, 𝜖 = 1, is reached 

(Kallman & Kapadia, 2014, p.8).  Figure 7: [Top-to-bottom] Example of A*, D* Lite, and AD* 
in robotic pathfinding through a dynamic environment. 
(Likhachev et al. 2005, p.5-6) 
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Figure 7 shows all three of the algorithms discussed so far, pathfinding through a 

dynamically-changing environment. Black cells are obstacles and white cells are free 

space. The algorithm starts at the bottom-right node, and works its way towards the 

goal node in the top-left with each iteration. The cost of moving cell to cell in this 

example is one. The cells expanded by each algorithm for each step are shown in grey, 

and the resulting paths are shown as a dark grey line (Likhachev et al. 2005, p.5).  

As shown in this example, each algorithm reacts differently to this dynamic 

environment. A* searches down both corridors to the goal and decides upon the most 

optimal path. After two steps, as a gap in the wall is discovered, it must stop and replan 

from scratch this new optimal path to the goal. In total, A* had to expand upon 31 cells 

to reach its optimal solution (Likhachev et al. 2005, p.5).  

D* Lite acts much like A* does in its initial search, finding the optimal path and 

proceeding in two steps. Unlike A*, when the gap in the wall is discovered, D* Lite 

reuses its previous search information. Thus, the algorithm only must calculate the path 

through the gap in the wall to see that it is now the optimal path. In total, D* Lite only 

had to expand upon 27 cells, 15% less expansions than A*.  

Anytime Dynamic A* starts with an initially suboptimal solution of 𝜖 = 2.5, and 15 

cell expansions. In its next step, the algorithm refines its solution by reducing down to 

𝜖 = 1.5. After another step, when the agent discovers the gap in the wall, the algorithm 

must only expand upon those cells that are directly affected by this new information, the 

5 between it and the goal (Likhachev et al. 2005, p.5-6). In total, Anytime Dynamic A* 

only had to expand upon 20 cells to reach its optimal solution, far less than D* Lite and 

A*. Because AD* reuses previous solutions, and is able to repair invalidated solutions, it 
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is able to provide anytime solutions in dynamic environments very efficiently (Likhachev 

et al. 2005, p.6). 

 

Navigation Meshes and Software Implementations 

 Pathfinding environments have evolved over the decades in computing. With 

faster hardware and graphical processing capabilities, larger and more complex 

environments have been created virtually to test pathfinding algorithms. With advanced 

sensor capabilities and advances in robotics, the real world has also opened up to the 

possibility of autonomous drones in need of pathfinding through ever-changing 

environments. A navigation mesh must represent the free environment efficiently so that 

pathfinding within them is optimal. There are several basic properties a navigation mesh 

must adhere to. A navigation mesh should represent the environment in O(n) number of 

cells or nodes to allow search algorithms to operate efficiently, facilitate the computation 

of quality paths, provide an efficient mechanism for computing paths with arbitrary 

clearance from obstacles, be robust in order to allow for unpredictable dynamic 

updates, and should efficiently update itself when there are changes to the environment 

(Kallman & Kapadia, 2014, p.5).  

These are most crucial in virtual world simulations, and are best seen in the 

software implementations of pathfinding. Many of the software implementations for 

pathfinding are paid licenses. One software implementation known as PathEngine does 

have a free demo package, and will be discussed in this paper as well as utilized during 

the presentation. 
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Figure 8: PathEngine Demo testbed (MeshFederation) in a 3-Dimensional Navigation Mesh (PathEngine, 
2014. The 3D orange object is the pathfinding agent, the line extending from it is its path, and the small 
axis is the path’s endpoint. Blue lines are the bounds of the environment, and white-lined outlines are 
obstacles within the environment. 
 As seen in Figure 8, the PathEngine demo set navigates through three-

dimensional navigation meshes. PathEngine’s primary agent movement is ground-

based, built around an “advanced implementation of points-of-visibility pathfinding on 

3D ground surfaces” (PathEngine). At the core of this lies a “well-defined agent 

‘movement model’” (PathEngine); this movement model defines how agents and 

obstacles interact in the environment, allowing for robust movement by taking into 

consideration how obstacles and surface edges constrain agent movement 

(PathEngine). Agent height is also able to be taken into consideration, allowing for 

pathfinding through complex environments with varying clearances. PathEngine is used 

in a number of current video games for pathing solutions, such as ‘Shadow of Mordor’, 
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‘The Witcher 2’, and ‘Stronghold Crusader 2’, to name a few (PathEngine). These 

games often have many agents moving around large spaces in real-time, which 

PathEngine must be able to handle efficiently to avoid slowing frame rates, and 

optimally in order to provide reliable paths for these agents. 

 

Conclusion 

 The shortest path problem has been a challenge for the many algorithms. It is a 

complex problem that has grown over time with the evolution of robotics and computer 

graphical environments. Of the many algorithms, A* and its variants D* and AD* have 

shown how solutions have expanded over the years to match the demands of this ever-

growing problem. As personal and commercial UAVs become more popular (Amazon 

Prime Air, for example), and demands for virtual world pathfinding grow with increasing 

complexity in environments and demand for greater numbers of agents moving around 

these environments, the demands for faster and more efficient pathfinding algorithms is 

certain to continue. Further development will be needed as future challenges in 

pathfinding appear, with further expansions on these algorithms needed to solve them. 
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