
Algorithms Used in Pathfinding and Navigation Meshes 1

Algorithms Used in Pathfinding and Navigation Meshes

Corey Trevena

Introduction

 Finding the shortest path between a starting point and end point has many

algorithmic solutions, but as demands for the shortest path move from static to dynamic

environments, these algorithms have needed to become more complex. This paper will

address the algorithms used in this pathfinding, starting with Dijkstra’s Algorithm, and

expanding on Dijkstra the A* algorithm, Dynamic A* (D*) algorithm, and the Anytime

Dynamic A* (AD*) algorithm. The core of this paper will focuses on Dynamic A* and

Anytime Dynamic A*, before wrapping up with software-based solutions for pathfinding

in environments called Navigational Meshes (Kallman & Kapadia, 2014).

History

 Finding the shortest path is a well-known problem in Computer Science, but it is

by far not a new problem for humanity. From the shortest paths of trade routes, to the

shortest routes to ship cargo by, the shortest path problem has been the focus of

mathematical research long before computers were ever able to be utilized (Schrijver,

2010). Matrix methods were developed in 1946 for their applications to communication

networks, and shortly after shortest-length paths were addressed by Bellman-Ford and

Dijkstra in 1956 and 1959, respectively (Schrijver, 2010). In recent years, the shortest

path problem has had to contend with the complexities of the real world through

robotics, and the virtual world via video games and simulations.

Algorithms Used in Pathfinding and Navigation Meshes 2

Dijkstra’s Algorithm

 Dijkstra’s algorithm requires a connected graph where all edges have non-

negative weights. A node is selected to be the starting point and is initialized to a

distance of zero, and all other nodes’ tentative distances to infinity. The nodes are then

traversed, starting from the source node, expanding outward to the next node of the

lowest tentative distance. All of the connected unvisited neighbors from the current node

have their distances calculated by: Distance to current node + Distance from current

node to neighbor. If the value returned is less than the node’s current tentative distance,

it replaces the value with the lesser one. All nodes are initialized to infinity to ensure

discovery by the algorithm. The algorithm continues through the weighted graph,

updating the distances of unvisited nodes when needed, adding nodes to the visited set

once all of its neighbors have been considered. This continues until the goal node is

reached and added to the visited set. Once the goal node has been added to the visited

set, the shortest path from the source node to the goal has been found.

Figure 1: The Euclidean Shortest Path between two points inside a triangulated simple polygon. (Kallman
& Kapadia, 2014, p.2) Start and endpoints are placed within the polygon, the red line between is the ESP.

Algorithms Used in Pathfinding and Navigation Meshes 3

Concepts and Terminology: Basic Visual Representations

 The first concept that is important in understanding visualizing pathfinding are the

Euclidean Shortest Paths (ESPs). These paths, when no shorter path exists, are

globally optimal and show the shortest path between two points (Kallman & Kapadia,

2014, p.1). As shown in Figure 1, this can be simply shown when obstacles in an

environment are reduced to a simple polygon, with the start and endpoints located

within the bounds of the polygon. The ESP is shown in red between the two points.

 Figure 2: “The Euclidean shortest path between p and q can be found by searching the visibility graph of S (top-

left) augmented by the edges connecting all visible vertices to p and q (top-right). The [middle] diagrams show the

added edges connecting the visible vertices to p and q.” (Kallman & Kapadia, 2014, p.2)The bottom diagrams are

popular optimizations on visibility graphs, discarding the edges that lead to non-convex vertices both in processing

the environment (bott-left) and with source and destination points (bott-right). (Kallman & Kapadia, 2014, p.3).

Algorithms Used in Pathfinding and Navigation Meshes 4

 The simple polygon representation of Figure 1 is misleading, as the generic case

in finding Euclidean shortest paths often includes multiple corridors and exits (Kallman

& Kapadia, 2014, p.2). These multiple corridors and exits are multiple routes that need

to be considered by the algorithm to reach the endpoint. A visibility graph, as shown in

Figure 2, is a graph of the set S of all polygonal obstacles existing in some space, and is

composed of all segments connecting vertices that are visible to each other in S

(Kallman & Kapadia, 2014, p.2). As shown in Figure 2, the obstacles (in red) block the

path between points p and q, with augmented edges (in blue) providing multiple paths

around these obstacles. Thus, after these edges connecting the visible vertices are

established, graph search algorithms such as Dijkstra and A* can then be applied to the

visibility graph to find the Euclidean shortest paths from p to q.

The A* Algorithm

A* is a Dijkstra variant that uses a heuristic cost function h to progress faster towards

the endpoint q without lessening the optimality of the solution (Kallman & Kapadia,

2014, p.3). The heuristic cost h is

the “cost-to-go”, which unlike

distance traveled so far (g), is

often implemented as distance to

the endpoint. This is superior to

Dijkstra due to the fact that A*

takes into account both the

distance traveled, and the distance Figure 3: The A* Algorithm (Kallman & Kapadia, 2014, p.3)

Algorithms Used in Pathfinding and Navigation Meshes 5

left to reach the goal node (Kallman & Kapadia, 2014, p.3). This lets A* favor nodes

closer to its goal, rather than expanding outwards to the next node of the lowest

tentative distance.

Dijkstra’s algorithm is guaranteed to find the shortest path possible, but A* is far

faster at finding a path to the goal node. This means that A* is better for real-time

pathfinding, due to its speed. It still runs into issues with real-world pathfinding

problems, due to the ever-changing conditions present within dynamic environments,

needing to recalculate its entire path when new information is received.

Figure 4: The medial axis (left) represents points of maximum clearance. This can be decomposed,

such that each edge is associated to its closest pair of obstacle elements (right). (Kallman & Kapadia,

2014, p.4).

The Medial Axis

Visual graphs have one key issue: they fail to address constraints that a

pathfinding object may have. Such a key constraint could be clearance between the

object and its obstacles. These constraints are taken into account by spatial partitioning

Algorithms Used in Pathfinding and Navigation Meshes 6

structures (Kallman & Kapadia, 2014, p.4), such as Voronoi diagrams and with medial

axis, as show in in Figure 4. These paths shown by the medial axis may not be

Euclidean shortest paths, but in trade-off naturally allows the integration of clearance

constraints (Kallman & Kapadia, 2014, p.4). The medial axis approach allows for

algorithms to find the best locally shortest path for an object quickly; thus path can then

be easily interpolated towards the medial axis in order to reach maximum clearance

when needed (Kallman & Kapadia, 2014, p.4).

Dynamic and Anytime Algorithms: Overview

 Path planning for the real world involves dealing with an inherently uncertain and

dynamic place; models are difficult to obtain and quickly go out of date and time for

deliberation is often very limited (Likhachev et al. 2005, p.1). Thus, replanning

algorithms are needed to correct precious solutions on updated information in this ever-

changing, dynamic environment. In addition to dynamic environments, when a pathing

problem is complex, the optimal solution may not be able to be found within the

deliberation time (Likhachev et al. 2005, p.1). Anytime algorithms aim to address this

issue by finding a suboptimal solution quickly, and then improve upon this solution until

time for planning is exhausted (Likhachev et al. 2005, p.1). The interesting issues in

modern pathfinding are both the dynamic and complex. Robotics, for example, run into

path planning problems that both require replanning, and need to find a solution within a

limited timeframe. Thus, an anytime and dynamic algorithm is required in order to solve

these modern-day problems. Before joining dynamic and anytime approaches, the

dynamic expansion on A* will be discussed.

Algorithms Used in Pathfinding and Navigation Meshes 7

Figure 5: D* Lite Algorithm. (Likhachev et al. 2005, p.3)

Dynamic A* (D*) and D* Lite

 The dynamic expansion for A* is called Dynamic A*, or D* for short. Dynamic A*

aims to be able to replan its optimal path when new information arrives (Likhachev et al.

Algorithms Used in Pathfinding and Navigation Meshes 8

2005, p.1), thus being able to address dynamic environments. Dynamic A* is a popular

choice for a replanning algorithm, and has been shown to be up to two orders of

magnitude more efficient than A* replanning from scratch, when new information is

received (Likhachev et al. 2005, p.2). Dynamic A* is optimized further into D* Lite, and

since these two are fundamentally similar, D* Lite will be covered since it has been

found to be slightly more efficient than Dynamic A* (Likhachev et al. 2005, p.2).

 “D* Lite maintains a least-cost path from a start state 𝑠௦௧௔௥௧ ∈ 𝑆 to a goal state

𝑠௚௢௔௟ ∈ 𝑆, where S is the set of states in some finite state space” (Likhachev et al. 2005,

p.2). D* does this by storing the cost from each state s to the goal in g(s), and stores a

one-step lookahead cost rhs(s) which satisfies:

𝑟ℎ𝑠(𝑠) = ቊ 0
𝑚𝑖𝑛௦ᇲ∈ ௌ௨௖௖(௦)(𝑐(𝑠, 𝑠ᇱ) + 𝑔(𝑠ᇱ))௢௧௛௘௥௪௜௦௘,

௜௙ ௦ ୀ ௦೒೚ೌ೗ � where 𝑆𝑢𝑐𝑐(𝑠) ∈ 𝑆 denotes

the set of successors s and c(s,s’) denotes the cost of moving from s to s’, the arc cost

(Likhachev et al. 2005, p.2). Any number of goals can be incorporated, and in such a

case, 𝑠௚௢௔௟ is the set of goals. The state is called consistent if the cost to the goal, g(s),

is the same as the one-step lookahead cost rhs(s). Consistent states are unchanged,

while overconsistent (if 𝑖𝑓 𝑔(𝑠) > 𝑟ℎ𝑠(𝑠)) or underconsistent states are in need of

updating. The algorithm also utilizes a priority queue that helps it to focus its search and

run more efficiently (Likhachev et al. 2005, p.2). The priority (key value) of a state s in

the queue is (Likhachev et al. 2005, p.2):

𝑘𝑒𝑦(𝑠) = [𝑘1(𝑠), 𝑘2(𝑠)]
= ൣmin൫𝑔(𝑠), 𝑟ℎ𝑠(𝑠)൯ + ℎ(𝑠௦௧௔௥௧, 𝑠),min൫𝑔(𝑠), 𝑟ℎ𝑠(𝑠)൯൧

Algorithms Used in Pathfinding and Navigation Meshes 9

The algorithm restricts its attention to the relevant paths, and thus ensures that a least-

cost path will have been found when the algorithm has finished (Likhachev et al. 2005,

p.3).

Figure 6: Anytime Dynamic A* algorithm: Typical modern implementation (Kallman & Kapadia, 2014,

p.8).

Algorithms Used in Pathfinding and Navigation Meshes 10

Anytime Dynamic A* (AD*)

 The Anytime expansion on Dynamic A* is Anytime Dynamic A*. The algorithm is

an expansion on D*, aiming to help solve the problem D* has in a time-constrained

environment. Anytime algorithms must be satisfied with their solution to a pathing

problem by the end of their allotted computing time since real-world scenarios, such as

those faced in drones and robotics, do not have unlimited time to sit and completely

calculate out the globally optimal solution after each step (Likhachev et al. 2005, p.3).

 The algorithm shown in Figure 6 is the typical implementation of Anytime

Dynamic A* found today (Kallman & Kapadia, 2014, p.8). AD* works just as D* Lite

above, but unlike D* Lite, instead of processing all inconsistent nodes only those whose

costs are beyond the inflation factor 𝜖 are expanded (Kallman & Kapadia, 2014, p.8).

The algorithm performs an initial

search by expanding each state once

(𝜖଴), while keeping track of already

expanded nodes that have become

inconsistent due to changes in their

neighbors, inserting these inconsistent

nodes into an INCONS list. If there are

no world changes to create

inconsistent nodes, decrease 𝜖

iteratively, improving path quality until

an optimal solution, 𝜖 = 1, is reached

(Kallman & Kapadia, 2014, p.8). Figure 7: [Top-to-bottom] Example of A*, D* Lite, and AD*
in robotic pathfinding through a dynamic environment.
(Likhachev et al. 2005, p.5-6)

Algorithms Used in Pathfinding and Navigation Meshes 11

Figure 7 shows all three of the algorithms discussed so far, pathfinding through a

dynamically-changing environment. Black cells are obstacles and white cells are free

space. The algorithm starts at the bottom-right node, and works its way towards the

goal node in the top-left with each iteration. The cost of moving cell to cell in this

example is one. The cells expanded by each algorithm for each step are shown in grey,

and the resulting paths are shown as a dark grey line (Likhachev et al. 2005, p.5).

As shown in this example, each algorithm reacts differently to this dynamic

environment. A* searches down both corridors to the goal and decides upon the most

optimal path. After two steps, as a gap in the wall is discovered, it must stop and replan

from scratch this new optimal path to the goal. In total, A* had to expand upon 31 cells

to reach its optimal solution (Likhachev et al. 2005, p.5).

D* Lite acts much like A* does in its initial search, finding the optimal path and

proceeding in two steps. Unlike A*, when the gap in the wall is discovered, D* Lite

reuses its previous search information. Thus, the algorithm only must calculate the path

through the gap in the wall to see that it is now the optimal path. In total, D* Lite only

had to expand upon 27 cells, 15% less expansions than A*.

Anytime Dynamic A* starts with an initially suboptimal solution of 𝜖 = 2.5, and 15

cell expansions. In its next step, the algorithm refines its solution by reducing down to

𝜖 = 1.5. After another step, when the agent discovers the gap in the wall, the algorithm

must only expand upon those cells that are directly affected by this new information, the

5 between it and the goal (Likhachev et al. 2005, p.5-6). In total, Anytime Dynamic A*

only had to expand upon 20 cells to reach its optimal solution, far less than D* Lite and

A*. Because AD* reuses previous solutions, and is able to repair invalidated solutions, it

Algorithms Used in Pathfinding and Navigation Meshes 12

is able to provide anytime solutions in dynamic environments very efficiently (Likhachev

et al. 2005, p.6).

Navigation Meshes and Software Implementations

 Pathfinding environments have evolved over the decades in computing. With

faster hardware and graphical processing capabilities, larger and more complex

environments have been created virtually to test pathfinding algorithms. With advanced

sensor capabilities and advances in robotics, the real world has also opened up to the

possibility of autonomous drones in need of pathfinding through ever-changing

environments. A navigation mesh must represent the free environment efficiently so that

pathfinding within them is optimal. There are several basic properties a navigation mesh

must adhere to. A navigation mesh should represent the environment in O(n) number of

cells or nodes to allow search algorithms to operate efficiently, facilitate the computation

of quality paths, provide an efficient mechanism for computing paths with arbitrary

clearance from obstacles, be robust in order to allow for unpredictable dynamic

updates, and should efficiently update itself when there are changes to the environment

(Kallman & Kapadia, 2014, p.5).

These are most crucial in virtual world simulations, and are best seen in the

software implementations of pathfinding. Many of the software implementations for

pathfinding are paid licenses. One software implementation known as PathEngine does

have a free demo package, and will be discussed in this paper as well as utilized during

the presentation.

Algorithms Used in Pathfinding and Navigation Meshes 13

Figure 8: PathEngine Demo testbed (MeshFederation) in a 3-Dimensional Navigation Mesh (PathEngine,
2014. The 3D orange object is the pathfinding agent, the line extending from it is its path, and the small
axis is the path’s endpoint. Blue lines are the bounds of the environment, and white-lined outlines are
obstacles within the environment.
 As seen in Figure 8, the PathEngine demo set navigates through three-

dimensional navigation meshes. PathEngine’s primary agent movement is ground-

based, built around an “advanced implementation of points-of-visibility pathfinding on

3D ground surfaces” (PathEngine). At the core of this lies a “well-defined agent

‘movement model’” (PathEngine); this movement model defines how agents and

obstacles interact in the environment, allowing for robust movement by taking into

consideration how obstacles and surface edges constrain agent movement

(PathEngine). Agent height is also able to be taken into consideration, allowing for

pathfinding through complex environments with varying clearances. PathEngine is used

in a number of current video games for pathing solutions, such as ‘Shadow of Mordor’,

Algorithms Used in Pathfinding and Navigation Meshes 14

‘The Witcher 2’, and ‘Stronghold Crusader 2’, to name a few (PathEngine). These

games often have many agents moving around large spaces in real-time, which

PathEngine must be able to handle efficiently to avoid slowing frame rates, and

optimally in order to provide reliable paths for these agents.

Conclusion

 The shortest path problem has been a challenge for the many algorithms. It is a

complex problem that has grown over time with the evolution of robotics and computer

graphical environments. Of the many algorithms, A* and its variants D* and AD* have

shown how solutions have expanded over the years to match the demands of this ever-

growing problem. As personal and commercial UAVs become more popular (Amazon

Prime Air, for example), and demands for virtual world pathfinding grow with increasing

complexity in environments and demand for greater numbers of agents moving around

these environments, the demands for faster and more efficient pathfinding algorithms is

certain to continue. Further development will be needed as future challenges in

pathfinding appear, with further expansions on these algorithms needed to solve them.

Algorithms Used in Pathfinding and Navigation Meshes 15

Works Cited

Alexander Schrijver. (2010). On The History Of The Shortest Path Problem. Retrieved

from http://www.math.uiuc.edu/documenta/vol-ismp/32_schrijver-alexander-sp.pdf

Amazon Prime Air. Retrieved from http://www.amazon.com/b?node=8037720011

E. W. Dijkstra. (1959). A Note on Two Problems in Connexion with Graph. Retrieved

from http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf

Marcelo Kallmann, Mubbasir Kapadia. (2014). Navigation meshes and real-time

dynamic planning for virtual worlds. Retrieved from

https://dl.acm.org/citation.cfm?id=2614028.2615399&coll=DL&dl=ACM&CFID=4953115

90&CFTOKEN=37719856

Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, Sebastian Thrun.

(2005). Anytime Dynamic A*: An Anytime, Replanning Algorithm. Retrieved from

https://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf

PathEngine. (2014). PathEngine: Intelligent Agent Movement. Retrieved from

http://www.pathengine.com/

PathEngine Demos. (2014). PathEngine_SDKBase_05_35.zip. Retrieved from

http://www.pathengine.com/index

http://www.math.uiuc.edu/documenta/vol-ismp/32_schrijver-alexander-sp.pdf
http://www.amazon.com/b?node=8037720011
http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf
https://dl.acm.org/citation.cfm?id=2614028.2615399&coll=DL&dl=ACM&CFID=495311590&CFTOKEN=37719856
https://dl.acm.org/citation.cfm?id=2614028.2615399&coll=DL&dl=ACM&CFID=495311590&CFTOKEN=37719856
https://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf
http://www.pathengine.com/
http://www.pathengine.com/index

