Computational Modeling of Neural Systems

Martin Torres

California State University Stanislaus
One University Circle
Turlock, CA 95382

mtorres27@csustan.edu

March 2015

Abstract
As computational power grows, new methods of modeling complex systems are
developed that allow scientists to understand more about biological systems. This in
turns leads to the development of novel algorithms and computational techniques,
which creates a cycle of discovery and innovation.

In this paper we will focus on artificial neural networks, which are
biologically inspired statistical learning algorithms. Specifically, we will discuss the
architecture of these networks, as well as stochastic gradient descent and
backpropagation, which are two core algorithms in neural networks.

We will also discuss some computational models that are being used to
advance our understanding of the brain. The tools we will discuss are NEURON and
EEGLAB. We will discuss how NEURON, a simulation engine, is used to model
neurons and networks of neurons. We will then discuss how EEGLAB analyzes

electroencephalographic (EEG) recordings.

1 Introduction

When asked about the relationship between the brain and computers, often
the brain-computer analogy is the first thing to come to mind. However, this analogy
falls short in many ways, and is often highly criticized [1]. Even though the brain and
the computer do not work in the same way, scientists continue to model algorithms
after biological processes, and try to model the brain through the use of computer
software. Because the brain and computer are better at different tasks, we can use

one to learn about the other.

Motivating Questions. By modeling the way that neurons are connected in the
brain, artificial neural networks have been used to solve problems that involve
machine learning and pattern recognition. These networks have made advances that
would otherwise be difficult with logic programming. If our algorithms get more
complex with the understanding of the human brain, will we eventually be able to
teach a computer to do difficult tasks such as creative writing?

Will we ever be able to completely model a human brain? Scientists have
developed software that is useful for modeling specific biological processes, but
much progress still needs to be made for software that realistically models the
entire brain. [s a complete understanding of the human brain necessary in order to
create a full-scale model? Just because we cannot fully model the brain, does not
mean that simulations have not contributed to understanding how the brain works.

Simulations allow researchers to gain a better understanding of specific processes in

the brain, such as what happens when an ion channel releases stored calcium in a

neuron [2].

Outline. Neural Networks are discussed in Section 2. This section is divided into
four parts, which cover the perception and sigmoid neurons (2.1), neural network
architecture (2.2), stochastic gradient descent (2.3), and backpropagation (2.4).
Section 3 will cover computational models and tools that are used to research the
brain. The models and tools that will be discussed are NEURON (3.1), and EEGLAB

(3.2). Finally Section 4 will discuss insights and conclude the paper.

2 Artificial Neural Networks

Threshold logic, created by Warren McCulloch and Walter Pitts in 1943, was
one of the first approaches to computationally model neural networks [3]. This
opened up research for decades to come, but then slowed due to the lack of
processing power. Artificial neural networks (ANNs) have gained recent popularity,

in part due to increased computational power and new techniques in deep learning.

2.1 Perceptrons and Sigmoids

In order to understand ANNs, we need to briefly discuss the fundamental
components that make up the networks. Today, most neural networks are
implemented with the sigmoid neuron, but in order to fully appreciate and
understand the sigmoid neuron, we must first step back to the perceptron, which

was created by Franklin Rosenblatt [4]. The perceptron is based on a simple idea, a

unit takes several binary inputs, and then produces a single binary output. In order
to compute the output, weights are used to model the importance for each of the
inputs. The output, 0 or 1, is evaluated based on whether or not the weighted sums

are less than or greater than a threshold value.

Perceptron Notation 1

0 if w;x; < threshold

J
1 if Z w;x; > threshold
J

We can further simplify this equation by writing the summation of the
weights as a dot product, where w and x are vectors that contain weights and inputs.
We can also move the threshold to the other side of the equation, which is known as

the perceptron’s bias b = -threshold [5].

Perceptron Notation 2

0 ifw-x+b <0

0“”’“”{1 ifw-x+b >0

Based on this equation, the higher the bias is, the easier it is for the
perceptron to output a 1. This way, it is easier to see how the bias is changing the
output of the perceptron. Perceptrons however, have a troubling problem. Suppose

you want to change the behavior of the perceptron to output a slight difference by

changing the weight. Because the perceptron is binary, a small change in the weight
can cause the output to completely change. This in turn, will change the entire
network of neurons, making it difficult to make small adjustments. The sigmoid
neutron helps to overcome this problem.

Sigmoid neurons, like perceptrons, receive inputs and produce a single
output. However, instead of binary values, inputs can be anywhere between 0 and 1.
Sigmoid neurons also have weights for each input. The sigmoid neuron’s output is

defined as follows:

Sigmoid Output 1

o(w-x +b)

Where o is called the sigmoid function [6]:

1
oz)=—"——
(2) 1+ e 2
Which leads to the full equation:
1
output = 1T owxid)

Using this equation, we can see that o also produces a number between 0 and
1. This is useful because now, a small change in the weight or biases will cause a
small change in the output. Using sigmoid neurons, a neural network could adjust its
weights and bias to achieve a desired small change in the output of a neuron, which

is much more useful in learning networks.

2.2 Architecture

The three layers in an ANN are the input layer, hidden layer, and output layer
[6]. Input layers are defined as neurons that are feeding information into the system,
and output layers are neurons or a neuron that gives final output from the network.
Hidden layers are the neurons in between the input and output layers. The amount
of hidden layers varies throughout each network, and researchers are always trying

to find the most efficient ways to design neural networks for each learning task.

Example Artificial Neural Network

Hidden
Input
Output

[11]

Feedforward networks are ANNs that do not have loops within the network
structure, they move straight through the network. There are also recurrent neural
networks, which contain loops and allow neurons to fire for a certain amount of
time.

The architecture of ANNs are relatively straightforward, but extremely
powerful and versatile. The study of neural networks with a large amount of hidden
layers has become increasingly popular with the increase of computational power,

which adds even more flexibility to neural networks [8].

2.3 Stochastic Gradient Descent

We know that changing the weights and biases of a sigmoid neuron will
change the output as well, but how can we use this in order to make a whole
network learn? ANNs use training sets, where they try to adjust the weights and
biases to match the desired output of the network. In order to automatically adjust
the weights and biases to produce the desired output, we use a cost function
(sometimes referred to as the objective or loss function). The objective is to find
weights and biases that minimize the cost function [9]. The reason we use the cost
function to assess the performance of the ANN instead of the actual classification
accuracy is because it is much easier to measure how small changes affect the cost
function rather than the overall classification accuracy.

Neural networks often use gradient descent to minimize the cost function

[10]. In order to explain gradient descent, we will think of trying to minimize a cost

function C (v4, v,) where v; and v, are two parameters. If we wanted to find out

how a change in v; (Av;) or a change in v, (Av,) affects C, we could use the

following formula:

Gradient Vector

AC aCA + oc
- Y1 dv,

A
0V, V2

Where 0 is the partial derivative. We can define the gradient of C as the vector of

partial derivatives:

VC—(aC 6C>T
~ \ov, ' dv,

Where T is the transpose operation. Defining Av as (Av;, Av,)T gives us
AC = VC - Av

Now remember, the purpose is to find values that would cause C to minimize. So we

would like to choose Av in order to make AC negative. If we use
Av = —nVC(,
where 7 is a small, positive parameter, then...
AC =~ —nVC-VC = —n||VC||?
which means that AC will be minimized as long as we use the above formula. If we

repeat this using the following update formula, we will be constantly moving

towards a minimum. [5]

vov =v—nVC

The above was an example with only two variables, but in reality, there are
many more variables in a neural network. Computing the partial derivatives for
these variables would quickly become computationally expensive. Stochastic
gradient descent speeds up the process of finding the gradient by using mini-
batches (small samples of training data). By averaging the small sample sizes, we

can get a relatively good estimate of what the gradient will be [12].

2.4 Backpropagation

Previously, we discussed stochastic gradient descent, and how we can use
the gradient to update weights and biases in our network to minimize the cost
function. However, we did not actually compute the gradient. Backpropagation aims
to calculate the gradient, which means finding the partial derivatives of the weights

and biases. Not only does backpropagation compute the gradient, but it also takes
into account error 8* (where L signifies the layer) in the network. There are four

main equations that compose the backpropagation algorithm [13]. We will briefly
introduce each of them, and the show how they work together to create the

backpropagation algorithm.

Four equations

Error in the output layer:
aC
L _ (L
6] - aa]L o (Zj)

Where ajL = O'(Wloll_1 + bl). Weight matrix is defined as w'! and bias vector by

b. This equation keeps track of two relations, the rate at which the cost is changing
atthe J th output, and the rate that the activation function o (the likelihood that a
neuron will fire) is changing at ZjL (the weighted input at the layer L). We can also

write this in a matrix-based form,
L _ (L
6t =V, COa'(z")

where © is the Hadamard product.

10

Error in terms of the error in the next layer:
st = (WHHTSHHE ¢'(24)

The only new term in this equation is (Wl+1)T, which is the transpose weight

matrix of the next layer. Combining the first two equations allows us to measure the
error in any layer of the network.
Rate of change of cost in terms of any bias in the network:

O_C = §!

ot 7

]

This equation shows that the rate of change of bias is the error, which can be easily
found in any layer using the equations above.
Rate of change of cost in terms of any weight in the network:

ac

[
ow;y

We now know how to compute both the error and the activation in order to obtain

the weight in the network. [5]

Now that we have the four equations that are necessary for the algorithm, we

will outline the proper steps of backpropagation.

Backpropagation algorithm

1. Inputx: First we initialize the input layer and set up the corresponding

activation al

11

2. Propagate activity forward: For each layer I, we compute zt = wlal™! + bt
andal = o (z l)
3. Calculate the error in the output layer: Compute 6% = VaCQO"(ZL)

4. Backpropagate the error: For each layer, compute

6‘[— ((Wl+1)T6l+1)®OJ(Zl)

ac ac -
5. Output: The gradient of the cost function —; = &} and —— = a} 16}
b; J OW . J

Backpropagation has allowed the much faster computation times of
computing gradients, which accelerated the research and usefulness of neural
networks [14]. Although the algorithm is difficult to grasp, it is important to take

time to understand this core algorithm that is used in ANNs.

3 Computational Models of the Brain

The brain, like computer science, has many different areas of study. Software
packages have helped researchers focus on specific areas of the brain, and allow
researchers to simulate processes in the brain that would be otherwise difficult to
study in real time. We will briefly introduce some of these software packages, and

give examples of how the technology can be put to use.

3.1 NEURON
NEURON is a free, open source software package that aims to simulate

neurons and networks of neurons. It was developed at Yale and Duke by Michael

12

Hines, John W. Moore, and Ted Carnevale. NEURON has been used with more than
1450 scientific articles and journals, and has a well-established community [15].
NEURON also allows Python to be run as the interpreter, which allows for the use of
scientific packages such as Numpy, Scipy, and Matplotlib [16].

Creating a simulation and plotting the results is fairly straightforward. We

will show some pseudo code of how to set up a neuron simulation.

Creating a Neuron

create soma, axon
soma {
L=100 //Length
diam= 100 //Diameter
insert hh //Hodgkin-Huxley channels

insert pas //Passive Membrane property

}
axon {
L =5000
diam =10
insert hh
insert pas
nseg =10 //The axon will have 10 compartments
}
connect axon(0), soma(1)
objref stim
soma stim = new IClamp(0.5) //Insert stimulus clamp in neuron
stim.del = 10 //delay
stim.dur =5 //duration
stim.amp = 10 //amplitude

run()

13

When we plot this to a graph, we can see how the voltage affects the soma

and the axon.

somaw(0.9)
axony(1)

30 40 50

-80 —

[17] [18]

3.2 EEGLAB

EEGLAB runs under MATLAB, and is meant for processing EEG data that is
collected during research. It has a large array of functions, which makes it easy to
preprocess, visualize, and perform analysis on EEG data from any number of
channels [18]. EEGs record the electrical impulses in the brain by using electrodes
attached to the scalp. Because neurons are constantly firing, large amounts of data
begin to accumulate quickly. Factors such as the amount of electrical impulses, the
timing, and the patterns of neurons firing all need to be recorded. EEGLAB helps to

analyze this type of data.

14

Example: Twenty seconds of EEG recordings on multiple channels.

g q iy L I A I i " L X X | L

f (0 s e e b Lo e et (S R R RIRE
F4-C4 A A AR A A S A L AL A A A S A A AL L
C4-P4 || Lottt S tEn AR Ut A E AU A it Bl L L L i {
P4-02 | Il UhAl SR il a8)
Fp1-F3 [t LR A AT) i
F3-C3 VIR BRI TR 1Y (VT 1, MR L LAl itk P ERAPUITURE NI BN
C3-P3 A T AT A AT AT A A A AR AT A A A AR A S i

P3-01 \MMM&/«MH‘Mﬂ—J\ﬁMfJMﬁ"w\ﬁ'W‘ A A
Fp2-F8 o MWIWrMMMwJuMMuWMMLMJMV\,

F8-T4 R e e L R

)

T4-T6 Lot A AU A AIHILLA 11t BRI PRSI PRV 1l ‘I](Al
T6-02 ol iy ' AP il
FpA-F7 i bl e U AEBET R0 L T A L 1 "\
(S| Y Uy il

F7.T3 LA R e w e o]
L A i A . R
T5-01 |y LA 1 A AL L -l E i R _;E,. U) At
F2-C2 MW‘MWMMWWMMMPWWMW
C2-P2 A1 L B AL e G

1 5“"" v prtA e AR)

[19]

EEGLAB heavily focuses on data processing and Independent Component
Analysis (ICA). ICA is meant to remove noise of other electrical signals, such as from
the eyes and other muscles [20]. This is a great tool in helping speed up

preprocessing, which has made EEG data much easier to work with.

4 Conclusions

One can argue that we have made much progress in the areas of
computational neuroscience and advancing algorithms. However, one can also argue
that computational neuroscience is still in its infancy, and that we still have much to
learn and discover. We have made more progress in the past century than we have
in thousands of years. Is this attributed to the brain or is it attributed to computers?
After examining algorithms like backpropagation and stochastic gradient descent, it

is fascinating to see how humans have developed these methods in order to gain

15

better understanding of our world and solve difficult problems. History has shown
us that humans have done things that we once thought would be impossible,
therefore I have no reason to doubt that our scientific progress will continue, and
we will eventually understand the brain and develop highly advanced and

intelligent algorithms.

References

[1] Carello, C., Turvey, M., Kugler, P., & Shaw, R. (1984). Inadequacies of the
Computer Metaphor. In Handbook of Cognitive Neuroscience (pp. 229-248).
Springer US.

[2] Weiliang Chen, Erik De Schutter. Python-based geometry preparation and
simulation visualization toolkits for STEPS. Frontiers in Neuroinformatics, 2014; 8
DOI: 10.3389/fninf.2014.00037

[3] McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent
in Nervous Activity". Bulletin of Mathematical Biophysics 5 (4): 115-
133.d0i:10.1007/BF02478259.

[4] Rosenblatt, F. (1958). "The Perceptron: A Probabilistic Model For Information
Storage And Organization In The Brain". Psychological Review 65 (6): 386-
408.d0i:10.1037/h0042519. PMID 13602029.

[5] Nielson, M. (n.d.). CHAPTER 1. Retrieved March 25, 2015, from
http://neuralnetworksanddeeplearning.com/chap1.html

[6] Martin Anthony (January 2001). Discrete Mathematics of Neural Networks:

Selected Topics. SIAM. pp. 3-. ISBN 978-0-89871-480-7.

16

[7] Judith E. Dayhoff, Neural network architectures: an introduction, Van Nostrand
Reinhold Co., New York, NY, 1990

[8] Ebru Arisoy, Tara N. Sainath , Brian Kingsbury , Bhuvana Ramabhadran, Deep
neural network language models, Proceedings of the NAACL-HLT 2012 Workshop:
Will We Ever Really Replace the N-gram Model? On the Future of Language
Modeling for HLT, p.20-28, June 08-08, 2012, Montreal, Canada

[9] Nikulin, M.S. (2001), "Loss function", in Hazewinkel, Michiel, Encyclopedia of
Mathematics, Springer, ISBN 978-1-55608-010-4

[10] Akarachai Atakulreka, Daricha Sutivong, Avoiding local minima in feedforward
neural networks by simultaneous learning, Proceedings of the 20th Australian joint
conference on Advances in artificial intelligence, December 02-06, 2007, Gold Coast,
Australia

[11] "Artificial neural network" by en:User:Cburnett - Own workThis vector image
was created with Inkscape.. Licensed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg#/media/Fi
le:Artificial_neural_network.svg

[12] Rainer Gemulla, Erik Nijkamp , Peter]. Haas, Yannis Sismanis, Large-scale
matrix factorization with distributed stochastic gradient descent, Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data
mining, August 21-24, 2011, San Diego, California, USA

[d0i>10.1145/2020408.2020426]

17

[13] Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald]. (8 October 1986).
"Learning representations by back-propagating errors". Nature 323 (6088): 533-
536.d0i:10.1038/323533a0.

[14] Werbos, P.J. (1975). Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences.

[15] (n.d.). Retrieved March 26, 2015, from
http://www.neuron.yale.edu/neuron/what_is_neuron

[16] Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform, 2009

[17] Carnevale, N.T. and Hines, M.L. The NEURON Book. Cambridge, UK: Cambridge

University Press, 2006.

[18] Neuron (software). (n.d.). Retrieved March 26, 2015, from

http://en.wikipedia.org/wiki/Neuron_(software)

[19] BMC Infectious Diseases 2006, 6:169d0i:10.1186/1471-2334-6-169

http://commons.wikimedia.org/wiki/File:Eeg_C]JD.jpg

[20] Delorme, A., & Makeig, S. (n.d.). EEGLAB: An open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. Journal of

Neuroscience Methods, 9-21.

