
Uses​ ​of​ ​Lightweight​ ​Containers​ ​and​ ​Operating​ ​System
Virtualization

Jake​ ​Butler

CSU​ ​Stanislaus
408-348-7806

jbutler1@csustan.edu

ABSTRACT
A Container has the ability to not only provide a lightweight and
scalable platform to test and develop software on, but provides
several other benefits that can serve to advance industries such as
software engineering and cloud storage. Various applications and
uses​ ​for​ ​container​ ​based​ ​software​ ​is​ ​discussed​ ​within​ ​this​ ​paper.

Categories​ ​and​ ​Subject​ ​Descriptors
H.3.3​ ​[​Information​ ​Systems​]:​ ​Computing​ ​Platforms

Keywords
Containers, Virtualization, Docker, Virtual Machines, Software
Engineering,​ ​Cybersecurity

1. INTRODUCTION
Virtual Machines have been the common software to provide
some form of virtualization for whatever reasons an individual
needs for that level of abstraction. However, VMs can be hindered
by their limited scalability, and the fact that each instance of a
VM requires a considerable amount of resources in order to run
effectively. Containers offer a solution in the form of what can be
considered a stripped-down version of a virtual machine. Each
instance of a container provides all the software necessary to run a
microservice, or an environment that can be dedicated to a single
task.

2. What​ ​Are​ ​Containers?
According​ ​to​ ​the​ ​website​ ​of​ ​the​ ​popular​ ​container​ ​system​ ​Docker,
a​ ​container​ ​can​ ​be​ ​defined​ ​as​ ​“a​ ​lightweight,​ ​stand-alone,
executable​ ​package​ ​of​ ​a​ ​piece​ ​of​ ​software​ ​that​ ​includes​ ​everything
needed​ ​to​ ​run​ ​it:​ ​code,​ ​runtime,​ ​system​ ​tools,​ ​system​ ​libraries,
settings”(“What​ ​Is​ ​A​ ​Container”,​ ​2017).​ ​Containers​ ​allow​ ​one​ ​to
easily​ ​bundle​ ​an​ ​applications​ ​code,​ ​configurations​ ​and
dependencies​ ​into​ ​manageable​ ​blocks​ ​that​ ​provide​ ​numerous
benefits​ ​such​ ​as​ ​runtime​ ​consistency​ ​and​ ​version​ ​control.​ ​They
utilize​ ​Linux​ ​cgroups​ ​and​ ​namespaces​ ​to​ ​maintain​ ​process
isolation.​ ​Coincidentally,​ ​the​ ​very​ ​concept​ ​of​ ​containers​ ​was
sprouted​ ​from​ ​trying​ ​to​ ​isolate​ ​namespaces​ ​in​ ​a​ ​linux
environment.​ ​Processes​ ​appear​ ​to​ ​run​ ​on​ ​their​ ​very​ ​own​ ​system
and​ ​provide​ ​a​ ​program​ ​with​ ​just​ ​enough​ ​storage​ ​and​ ​resources​ ​to
run.​ ​This​ ​has​ ​led​ ​containers​ ​to​ ​be​ ​aptly​ ​named​ ​JeOS,​ ​or​ ​“Just
enough​ ​OS”.

At​ ​first​ ​glance,​ ​a​ ​container​ ​can​ ​appear​ ​to​ ​be​ ​very​ ​much​ ​similar​ ​to​ ​a
virtual​ ​machine,​ ​in​ ​that​ ​they​ ​both​ ​provide​ ​a​ ​way​ ​to​ ​isolate
applications​ ​and​ ​provide​ ​a​ ​virtual​ ​platform​ ​for​ ​applications​ ​to​ ​run
on.​ ​However,​ ​the​ ​differences​ ​between​ ​the​ ​two​ ​highlight​ ​how
resources​ ​are​ ​managed​ ​using​ ​containerization.

When a Virtual Machine is used, the VM uses what is called a
“hypervisor” to run as an emulation layer. A hypervisor is a type
of firmware that can either run directly off of the hardware (Type
1 Hypervisor) or off a hosting operating system (Type 2
Hypervisor). Without going too much into it, just know that
hypervisors act as a layer of abstraction between the guest OS and
whatever is underneath the hypervisor. While virtual machines do
not need specific hardware in order to function, they are known to
consume a considerable amount of storage and processing
capacity​ ​compared​ ​to​ ​a​ ​server​ ​or​ ​a​ ​regular​ ​desktop.

The key difference between virtual machines and containers is the
structure of the two technologies. With a virtual machine, each
instance requires a guest operating system, along with whatever
libraries, programs, and dependencies desired. Containers, on the
other hand, do not require a guest operating system for each
container. Rather, they can all be thought of as multiple user space
instances​ ​that​ ​the​ ​kernel​ ​allows​ ​to​ ​run​ ​concurrently.

Container technology and virtualization began to formulate in the
late 70’s, when ​Unix-based systems utilized the ​chroot ​command,
which allowed a user to change the root directory of a process and
all of its children. This introduced a very early concept of process
isolation and file segregation, and paved the way for early
container technology. In early 2000’s FreeBSD extended a virtual
structure used by ​chroot called “jails”, which allowed a systems

administrator to partition a FreeBSD system into separate
individual environments, complete with their own IP address and
sets of configurations. Jails introduced a higher level of security,
in that each jail was completely separate from the others, and it
was not possible for a process from one to interact with the other,
only with the main system. Later on in the 2000’s saw the
introduction​ ​of​ ​Solaris​ ​containers​ ​and​ ​OpenVZ​ ​technology.

Both are quite similar in implementation, with some stark
contrasts. Namely that OpenVZ, which is run on most Linux
distributions, limits resource usage per container image, whereas
Solaris “zones” do not. These precursor technologies paved the
way for LinuX Containers (LxC) which Docker and other services
have​ ​branched​ ​their​ ​architectures​ ​from.

2.1​ ​Container​ ​Architecture

The structure of a container itself can be separated into essentially
four different layers. An advantage with containers, much like
VMs, is that they can be run off of any OS, and this has even led
to the creation of several open source projects to create
specialized OSs for the sole purpose of running container
technology​ ​off​ ​of​ ​them.

As can be seen in the figure, containers operate quite similarly to
virtual machines, with some key differences in their architecture.
Each container comes equipped with its own set of libraries and
dependencies that it runs with, which is supplied by the main
engine that the containers run off of. The engines themselves
client-server applications that consist of several layers to ensure
that that the container images run efficiently. The Docker Engine
will​ ​be​ ​used​ ​as​ ​an​ ​example​ ​for​ ​the​ ​following.

At the base level is the server, or the docker daemon, which is a
program that runs as a background process rather than an
interactive one. The docker daemon initializes and maintains
docker images that are requested by the docker client. From there,
a REST (Representational State Transfer) API is used to control

the interactions that the client initiates to the daemon, which is all
done​ ​through​ ​the​ ​Command​ ​Line​ ​Interface.

The Docker daemon is able to maintain all the images that run on
the container instances using a registry that stores pre-built
images. These registries can either be the public Docker
Hub/Cloud​ ​or​ ​a​ ​private​ ​registry​ ​managed​ ​by​ ​an​ ​organization.

The containers themselves are given a layer of isolation through
namespaces and control groups. Each container is given its own
unique namespaces(i.e. a ​pid ​namespace for process isolation and
a ​net ​namespace for managing the network interface.) Control
groups are used to limit the amount of resources that are available
to a certain container. This way, no container oversteps their
boundaries and violates the isolation principle that builds the
foundation​ ​of​ ​this​ ​technology.

3. Software​ ​Engineering​ ​and​ ​Research

In a truly perfect world, all softwares, from both commercial and
research aspects, would be runnable on whatever platform an
individual​ ​so​ ​chooses.
Unfortunately, in the real world, hardware and software are not as
perfect as everyone would like them to be. Being able to replicate
results from an experiment in a controlled and efficient
environment, which is a core fundamental of all research, no
matter​ ​the​ ​field,​ ​can​ ​be​ ​provided​ ​by​ ​using​ ​containers.

The paper ​Reproducible Network Experiments Using
Container-Based Emulation, ​Nikhil Handigol outlines using
container-based emulation to reproduce findings from research in
networking​ ​systems.

3.1​ ​Communication​ ​Networks

As previously mentioned, the ultimate goal of using containers for
research is to be able to replicate any and all results from other
papers and topics, so as to prove the validity of the thesis in
question. Handigol highlights that the key ideals for a testing
environment, dubbed “Mini-net Hifi”, for networking systems
research must be flexible enough to duplicate any topology
needed, and at very little cost, in regards to resources and cost. He
cites that, while other forms of testing, such as testbeds and
simulators, are available, containers and container based
emulators provide the best of both worlds while meeting all the
criteria needed. Handigold states that “like testbeds, emulators run
real code with interactive network traffic. [and] like simulators,
they support arbitrary topologies, their virtual ‘hardware’ costs
very little, and they can be ‘shrink wrapped’ with all of their code,
configuration and data into disk images to run on commodity
virtual​ ​or​ ​physical​ ​machines.”​ ​(Handigold​ ​et​ ​al,​ ​2012).

Mininet Hifi extends the functionality of the regular Mininet
design by “adding mechanisms for performance isolation,
resource provisioning, and monitoring for performance fidelity. 1

The scalability of container-based emulation is highlighted in the
model built by the research team for this paper. Using a series of
containers constructed through containers and linking the sessions
through a series of Vswitches, the Mini-net Hifi model is able to
effectively construct an emulator that mimics the structure of a
basic topology. The containers act as a set of virtual hosts that are
connected to a network namespace, which in turn “holds a virtual
network interface, along with its associated data, including ARP
caches​ ​and​ ​routing​ ​tables”(Handigold​ ​et​ ​al,​ ​2012).

3.1.1​ ​Results

The model constructed by Handigold and his team was given to
eighteen groups of students with differing levels of computer
expertise, with the purpose of having the latter recreate some

finding that was published in a paper, and were given three weeks
to do so. Out of these eighteen groups, “successfully reproduced
at least one result from their chosen paper, [and] Four teams
added new results, such as understanding the sensitivity of the
result to a parameter not in the original paper.”(Handigold et al,
2012).

1 ​The Original Mininet Model did not include any functionality to
account for true performance isolation and limiting, so the HiFi
model​ ​extended​ ​this​ ​using​ ​linux​ ​kernel​ ​cgroups​ ​and​ ​traffic​ ​control

The key concept to understand is that the use of containers for
emulation made it simple to reproduce a wide range of
experiments, demonstrating the versatility of container-based
emulation. It is worth noting that while most of the experiments
were successfully replicated, the degree of difficulty varied from
group to group. Handigold notes that while projects centered
around topics such as network configuration and data center
networking went very well, others appeared to struggle with
experiments that involved software that had not been patched or
updated recently. The fact that the model also emulated a smaller
network meant that there were difficulties if “the result depended
on parameters whose dependence on link speed was not
clear”(Handigold et al, 2012). Overall, the fact is that not only did
majority of these groups successfully recreate network
experiments inside a model that implemented container-based
emulation, several of the groups were able to create more data that
would​ ​adequately​ ​substantiate​ ​the​ ​original​ ​findings.

3.2​ ​Data​ ​Analysis

It seems in today's day and age it is impossible to not hear the
term “big data” in any industry. As businesses and corporations
grow larger, so to does their need to access vast amounts of data
and information in a timely and accurate manner. The same can be
said for the field of research. However, the amount of data being
generated is far outpacing the technology used to share and
analyze these datasets. In ​Container-based Analysis
Environments for Low-Barrier Access to Research Data​, Craig
Willis addresses this issue, and states that “there is a growing
trend toward providing access to large-scale research datasets
in-place via container-based analysis environments.”(Willis et al,
2017). He goes further, and describes an approach that involves
utilizing a platform known as the National Data Service (NDS)
Labs Workbench, which in turn utilizes the Docker and
Kubernetes​ ​container​ ​technology.

Shown in the preceding picture is the structure that the Labs
Workbench platform is developed into. The application uses
container-based technology such as Kubernetes to deploy core
services such as “the Nginx ingress load-balancer (nginx-ilb),
which provides authenticated access to running containers in the
cluster, as well as a thin REST API server (ndslabs-apiserver) an
Angular user interface (ndslabs-webui)”, while Docker is used for
image caching and running supported applications like Jupyter.
While Kubernetes alone is not very efficient in terms of
scalability, utilizing Docker in conjunction helps supplement what
the​ ​former​ ​lacks.

Another platform mentioned is named SciServer Compute, which
is discussed by Dmitry Medvedev in ​SciServer Compute:
Bringing Analysis Close to the Data​. ​SciServer is described as
“[a] big-data infrastructure project at Johns Hopkins University
that is developing a modular and scalable infrastructure for the
storage, access, query and processing of large, petabyte scale,
scientific datasets.”(Medvedev et al, 2016). The application uses
Docker containers to provide isolated workspace environments.
Medvedev notes that a moderate weakness of Docker containers is
the fact that “[they do] not easily scale across multiple
nodes.”(Medvedev et al, 2016). As a way to address this issue,
host nodes for Docker containers are run by virtual machines, so a
new VM can be created and populated with more containers, in
case a VM reaches the limit of containers that it can support given

its​ ​allocated​ ​resources.

The platform allows for users to create different preconfigured
Docker container images, each that can come equipped with
whatever libraries and dependencies are needed to perform the
tasks. The images pull from three different kinds of file
storage(which in of themselves are stored in Docker containers),
which are all connected to the Docker cluster by default. As can
be seen from the figure above, users pull whatever files from the
storage system that is needed for their particular environment.
This helps eliminate time spent waiting to download large

volumes of data across networks, since all the necessary files are
already​ ​connected​ ​to​ ​the​ ​user​ ​instance.

​ ​​3.2.1​ ​Summary

As previously mentioned, the need for fast and efficient analysis
of large amounts of data is a pressing matter. Cisco estimates that
by the year 2021, IP traffic will “reach 278.1 Exabytes per month
in 2021, up from 96.1 Exabytes per month in 2016”(Cisco, 2016),
and the LHC at CERN alone produces up to 40TB of unfiltered
data every second. Container-based analysis environments can
provide lightweight and scalable platforms to access large
amounts of research data, and an environment to replicate models
that​ ​produced​ ​them.

4.​ ​​ ​Applications​ ​in​ ​the​ ​Cloud

According to the Cisco Global Cloud Index, the amount of total
data stored in data centers will quintuple by 2020, from 171 to
915 exabytes, with traffic to and from data centers across the
world reaching up to fifteen Zettabytes (or Giagbytes) .5 x 101 13
in a year (Barnett et al., 2016). IDG’s Enterprise Cloud
Computing Survey in 2016 revealed that over seventy percent of
businesses have integrated Cloud storage into their business
models, or plan on doing so. Needless to say, the demand for
cloud services are on the rise for years to come. And with this
comes along another slough of problems; namely being able to
effectively distribute resources among jobs that may not require as
much.

4.1​ ​CoCOa
The Infrastructure-as-a-service (IaaS) model is a form of cloud

computing model in which a cloud center provides components
and resources to an organization that is usually present in an
on-site data center. Amazon Web Services (AWS), Google Cloud
Platform (GCP) and Microsoft Azure are examples of independent
IaaS services. However, the “pay-as-you-go” model that is
implemented by IaaS services can be rather rigid in nature.
Utilizing IaaS for smaller jobs and processes can leave a lot of
unused resources that an organization still pays for, regardless of
using​ ​it​ ​or​ ​not.

In order to better meet the demands of this workload, a system
called Computing in Containers (Cocoa) is proposed by Ziaomeng
Li and Fangming Liu in ​Cocoa: Dynamic Container-Based Group
Buying Strategies for Cloud Computing​. The term ‘Group buying’
is defined as a situation where “consumers enjoy a discounted
group price if they form a group to purchase a deal [and] using
price discount incentives, a cloud service provider can offer
various group buying deals to attract users with complementary
demands to form groups.” (Li et al, 2017). A certain number of
parties agree to divvy resources amongst each other, provided the
fact that none of them need more than they are given.
Container-based technology helps to aid this strategy, due in part
to the minimal overhead that containers incur and the flexibility
that​ ​they​ ​offer.

Traditional workload consolidation utilized VMs, but small jobs
pose challenges for this system. Namely, the dynamic nature of
these small jobs means that VMs frequently had to cycle out jobs
that have been completed, which in of itself can be a waste of
resources. And the fact that small jobs may not utilize a great
amount of CPU time may leave users paying for service time that
they​ ​do​ ​not​ ​even​ ​use.

Cocoa addresses this by dynamically grouping jobs together into
batches, then allocating these jobs into groups of containers,
which in turn are located in a specific VM. According to Li, after
evaluating workload data collected from over ten thousand
Google servers, “the performance of the approximation scheme
proves to be close to optimal in our simulation”(Li et al., 2017).
This container grouping can be achieved with native tools and
APIs​ ​for​ ​container​ ​technology,​ ​such​ ​as​ ​Docker​ ​Swarm.

4.2​ ​Grouping​ ​mechanism​ ​for​ ​CoCOa
In order to adequately allocate all jobs of various sizes, Cocoa
needed to adapt both a static and dynamic strategy to group jobs
together. Cocoa address this by using the static strategy to group
newly assigned jobs into container batches. Static grouping is
performed “[on] a batch of waiting jobs at the beginning of the
group buying service, or whenever there is a sufficient number of
jobs waiting to join buying groups” (Li et al., 2017). Cocoa must
efficiently divide a vector of computing resources (defined by the
paper as among a group of ​m ​jobs. The j c1, c2 ... cN)C = (
group of jobs is assigned into an instance of a VM, which assigns
containers to each job. Li defines the static group problem as a “in
packing problem in which the target is to pack a set of
variable-sized items into a number of bins at a minimal cost [and]
we consider group buying deals as bins and user demands as
items”(Li et al, 2017). To address dynamic grouping, Cocoa
maintains a queue of all the running groups that checks at regular
intervals. Containers are eliminated once the jobs contained
within them are complete, and a group is removed. The advantage
in this is that containers can be easily created and destroyed with
very minimal overhead and setup time. The takeaway here is that
the goal of this optimization model is to minimize the cost of the
group buying, and in a manner that satisfies all the demands of the
users in the group. Containers are able to achieve this due in part
to​ ​their​ ​flexible​ ​nature.

4.3​ ​Summary

The entire concept of cloud technology itself is based on some
level of virtualization. While VMs have been used due to the fact
that they utilize hardware more effectively, containers are able to
scale better and handle more jobs while consuming less resources.
Virtual infrastructure and architecture is what drives the cloud
centers and the IaaS model, and it is absolutely necessary to stay
in pace with the increase of data being stored in the cloud.
Containers provide many potential advancements in cloud storage,
whether used on their own or in conjunction with some other
virtualization technology. Platforms such as Youtube, Google
Search and more have been developed and deployed through use
of containers, with many more platforms beginning to incorporate
the​ ​technology.

5.​ ​Conclusion

In this paper, I discussed containerization technology and several
of the fields that it is being applied to. Containers give developers
the ability to isolate their applications in a flexible and minimal
environment that can be deployed on practically any system. From
scientific research to cloud deployment, the container systems
have started to become more integrated into numerous uses for
different reasons. I predict that in the future, the technology of
containers will diversify to each field over time. Both Docker and
Kubernetes themselves are FOSS (Free and Open Source
Software), which themselves branched from LxC. Different
communities will use them for different needs, eventually
adapting unique forms of container engines. I also believe that
containers will lead more organizations to adopt cloud
technologies, either to centralize all their data and resources, or to
host legacy software. A quote from software engineer Marc
Andreessen states that “Software is eating the world.”. If that is
the​ ​case,​ ​then​ ​containers​ ​will​ ​be​ ​the​ ​table​ ​that​ ​it​ ​is​ ​served​ ​on.

6.​ ​​REFERENCES

[1] What​ ​Is​ ​A​ ​Container?(n.d.)​ ​Retrieved​ ​from
https://www.docker.com/what-container

[2] Handigol,​ ​N.,​ ​Heller,​ ​B.,​ ​Jeyakumar,​ ​V.,​ ​Lantz,​ ​B.,​ ​&
Mckeown,​ ​N.​ ​(2012).​ ​Reproducible​ ​network​ ​experiments
using​ ​container-based​ ​emulation.​ ​​Proceedings​ ​of​ ​the​ ​8th
international​ ​conference​ ​on​ ​Emerging​ ​networking
experiments​ ​and​ ​technologies​ ​-​ ​CoNEXT​ ​12​.
doi:10.1145/2413176.2413206

[3] Willis,​ ​C.,​ ​Lambert,​ ​M.,​ ​Mchenry,​ ​K.,​ ​&​ ​Kirkpatrick,​ ​C.
(2017).​ ​Container-based​ ​Analysis​ ​Environments​ ​for
Low-Barrier​ ​Access​ ​to​ ​Research​ ​Data.​ ​​Proceedings​ ​of​ ​the
Practice​ ​and​ ​Experience​ ​in​ ​Advanced​ ​Research​ ​Computing
2017​ ​on​ ​Sustainability,​ ​Success​ ​and​ ​Impact​ ​-​ ​PEARC17​.
doi:10.1145/3093338.3104164

[4] Medvedev,​ ​D.,​ ​Lemson,​ ​G.,​ ​&​ ​Rippin,​ ​M.​ ​(2016).​ ​SciServer
Compute.​ ​​Proceedings​ ​of​ ​the​ ​28th​ ​International​ ​Conference
on​ ​Scientific​ ​and​ ​Statistical​ ​Database​ ​Management​ ​-​ ​SSDBM
16​.​ ​doi:10.1145/2949689.2949700

[5] Barnett,​ ​Thomas,​ ​et​ ​al.​ ​“Cisco​ ​Global​ ​Cloud​ ​Index.”​ ​​Cisco
Global​ ​Cloud​ ​Index​,​ ​Cisco,​ ​15​ ​Nov.​ ​2016,
www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowl
edgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-20
20_AMER_EMEAR_NOV2016.pdf.

[6] Yi,​ ​X.,​ ​Liu,​ ​F.,​ ​Niu,​ ​D.,​ ​Jin,​ ​H.,​ ​&​ ​Lui,​ ​J.​ ​C.​ ​(2017).​ ​Cocoa.
ACM​ ​Transactions​ ​on​ ​Modeling​ ​and​ ​Performance
Evaluation​ ​of​ ​Computing​ ​Systems,​​ ​​2​(2),​ ​1-31.
doi:10.1145/3022876

https://www.docker.com/what-container

