
Many of the computing tasks in biology amount to a series of simple text
manipulations. There is a wide variety of programs that facilitate these
text modifi cations for specifi c types of data, but there is also a single
set of general tools that can be used in many different contexts: regular
expressions. These are fl exible means of searching and replacing text. In
this chapter you will learn the components of regular expressions, while
later chapters will add further fl exibility and control to these tools.

A widespread language for search and replace
One of the most common computer problems faced by a scientist is to reorganize a
text fi le generated by one program so that its content can be understood by another
program. In some cases only a few manual changes may be needed. At other times
simple search and replace is suffi cient, such as when a fi le contains data separated
by commas and must be modifi ed to suit a program that expects data separated by
tabs. Often, though, the required manipulations can be too complicated for these
approaches, for example when the order of elements in each line needs to be rear-
ranged. All of us have at some point made these complex changes by hand, but
this gets tedious if many fi les need to be fi xed or the fi les are long. There is also the
danger that you may be in for more than you anticipated: most of us have spent
several hours manually reformatting a fi le, only to realize that we have to do it all
over again because something about the original fi le wasn’t quite right.

A surprising number of these seemingly complex problems can be addressed
using a powerful language for search and replace known as regular expressions.1

1 Regular expressions are also sometimes referred to as regexp, regex, or even grep. The latter is an
acronym for “global regular expression print,” a common tool for using regular expressions that is so
frequently used that it is often used as a synonym of the language as well.

REGULAR EXPRESSIONS:
POWERFUL SEARCH AND REPLACE

Chapter 2

HD02new boxes8_10.indd 17 10/7/10 8:45 AMJob: 生物应用 内文 P.17 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

18 Chapter 2

Regular expressions are widely used and are built into many environments, in-
cluding text editors, programming languages, some Internet search engines, and
many applications. Because regular expressions are so powerful and such a porta-
ble tool, they are the fi rst skill you will learn here. As you proceed, they will allow
you to perform complex text manipulations across a wide range of environments
using one skill set.

Regular expressions can do anything that can be done by simpler search and
replace tools, such as those found in a word processing program. This includes re-
placing one chunk of exact text (such as “jellyfi sh”) with another (“scyphozoan”).
You can also leave the replacement term empty, which leads to the deletion of the
matched text from the fi le.

Like many other search and replace tools, regular expressions can employ
wildcards. These are special characters in the query that can match more than
one particular character in the text being searched. Wildcards greatly extend the
utility of a search and replace tool when the text you want to match is variable.
This would be the case, for instance, if you wanted to fi nd all digits (i.e., number
characters), but you don’t know what the digits will actually be. Compared to
most other search and replace tools, regular expressions allow more fl exibility and
precision in the way that wildcards are designed and used. There are many ready-
to-use wildcards, and you can defi ne your own wildcards that match any sets of
characters you like.

The functionality of regular expressions extends well beyond customizable
wildcards. Regular expressions also make it possible to capture all or part of the
search term and use it in the replacement term. It is this capability that makes
regular expressions so versatile for extracting data from complex text fi les and
redisplaying them in a different sequence. You could, for example, fi nd any se-
quence of digits followed by “cm” (not just a particular number), and then insert
those digits (with or without the “cm”) elsewhere in the text.

To start getting familiar with regular expressions, you will fi rst use them
through the dialog box of a text-editing program. In Appendix 2, you will fi nd
tables summarizing the permitted syntax. Once you get comfortable with the lan-
guage, you will fi nd yourself doing a lot of quick “one-off” fi le processing using a
few well-conceived searches in a text editor. Regular expressions are so powerful
that many of the programs you will write later will do little more than open a fi le,
run a series of replacement operations on the contents (perhaps applying different
transformations to different portions of the fi le), and save the results.

Understanding the components of this new toolbox
Setting up the text editor
Open TextWrangler (the text editor introduced in Chapter 1) and create a new doc-
ument. Windows and Linux users should consult Appendix 1 for comparable edi-
tors that support regular expressions.

HD02new boxes8_10.indd 18 10/7/10 8:45 AMJob: 生物应用 内文 P.18 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

Regular Expressions: Powerful Search and Replace 19

Start just by doing a normal, old-fashioned replacement operation. In your
document, type the text:

Agalma elegans

Now select Find from the Search menu (or hit ⌘ F).2 In the dialog box, check the
Grep box (Figure 2.1), and make sure that Case Sensitive is also checked. Unless
you uncheck them, these options will remain selected each time you open the pro-
gram.

In the Find box type:

galma

and in the Replace box type a period by itself:

.

Then click the Replace All button. As expected, where it originally said:

Agalma elegans

it now says:

A. elegans

With the document window in the foreground, undo this last operation (⌘ Z) so
that the text again says Agalma elegans. A literal search term works fi ne if you
are dealing with only one species, but if your data fi le includes other species this
one-size-fi ts-all approach breaks down:

Agalma elegans
Frillagalma vityazi
Cordagalma tottoni

2 The symbol refers to the Command key on Apple keyboards, just to the left of the space button. It is
not the D key (Ctrl), which will be used later in terminal operations. In Windows programs, the
find command will likely be triggered by D F.

FIGURE 2.1 The Find and Replace dialog box in TextWrangler

Try D Z.

HD02new boxes8_10.indd 19 10/7/10 8:45 AMJob: 生物应用 内文 P.19 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

20 Chapter 2

Here, the same replacement will give
you:

A. elegans
Frilla. vityazi
Corda. tottoni

Equally awkward will be the situa-
tion where the search term occurs out-
side the instance you want to replace:

Mus musculus

Replacing this text (using Replace All
and the query us) will cause more prob-
lems than it solves:

M. m.cul.

Within the next few pages, you will
be able to build regular expressions to
handle all these cases and many more.

Your fi rst wildcard: \w for letters and digits
To add more fl exibility to your searches, you can use a wildcard. A wildcard is a
special character that represents a specifi c variety of characters, such as any nu-
meric digit. There are different wildcards that match different ranges or sets of
characters, many of which are listed and explained in Appendix 2.

There are several different notations for using regular expression wildcards.
Most commonly, wildcards are represented by a letter preceded by a backslash.
The fi rst wildcard introduced here is \w. It matches any letter (A-z) or digit (0-9),
as well as the underscore character (_).

To test this wildcard, type the following latitude and longitude into a new
blank document:

+40 46'N +014 15'E
+21 17'N -157 52'W

In this case, imagine that you want to get rid of all the trailing direction indica-
tors, for example north (N) and east (E). You could run four different searches to get
rid of N, E, S, and W in turn. Instead, to create one search term that covers all these
cases, use the \w wildcard. Remember that \w does not match just alphabet charac-
ters, but also digits. If you search and delete \w, you will end up with:

+ ' + '
+ ' - '

(Try it, then undo to get the original text back.) To get around this problem, take
advantage of the observation that the letters you want in this case always come
after a single tick mark. So you can use this search query:

'\w

Some programs
do not have \w.
See Appendix 1
or use jEdit.

INVISIBLE CHARACTERS
By default, placeholder
symbols for spaces are
not shown in most edit-
ing programs, but it is
sometimes helpful to see
these and other invisible
characters, such as tabs.
A drop-down menu in
TextWrangler allows you
to turn on this option by
selecting Show Invisibles

and then Show Spaces. In older versions of the program,
the menu is under a different small icon, and in other
programs you might have to search the help to fi nd the
equivalent command. For the moment, turn on both in-
visibles and spaces, and you should see little place-holders
in your text fi le.

HD02new boxes8_10.indd 20 10/7/10 8:45 AMJob: 生物应用 内文 P.20 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

Regular Expressions: Powerful Search and Replace 21

 SPECIAL PUNCTUATION The data tick marks (') in latitudes and longitudes,
 or in references to chemical structures (5'-AGCT-3'), are different from the
“curly” quote mark (’) used in contractions such as won’t as well as in quoting text.
Most text editors create tick marks when you use the double- and single-quote keys
on the keyboard, but word processors often employ a “smart quotes” feature which
automatically inserts curly quotes instead. On Mac OS X, you can insert curly quotes
using the Wand U keys in combination with open and close brackets: W]
makes opening single quotes and W [makes opening double quotes, while add-
ing the U key in either case makes the appropriate closing quotes.

The degree (°) symbol, which you may encounter in latitudes, longitudes, an-
gles, and temperatures, can be entered on Mac OS X using the key combination
WU 8. (Remember this as an alternative to *.)

In general, if there is a special punctuation character in the text you are working
with and you would like to include it in your search term, it is usually easiest to sim-
ply copy the character from the document and paste it into the search box. This will
ensure that you are using the right character—far from a trivial concern, since many
punctuation marks look quite similar. It also avoids the need to hunt down the par-
ticular keystrokes required to create obscure characters.

and replace with just a tick mark by itself, leaving:

+40 46' +014 15'
+21 17' -157 52'

As you can see, this searches for any letter, number, or underscore that comes im-
mediately after a tick mark, and replaces it with the tick mark itself.

Note that the letters used to form wildcards are case sensitive, which is to say
that \W does not mean the same as \w (in fact, it means the opposite!). On the other
hand, letters in a search term which are not wildcards will only match the same
letter of the same case, so searching for agalma will usually not fi nd Agalma.

Capturing text with ()
Perhaps the most important characteristic of regular expressions searches is the
ability to use parentheses to capture portions of the original text and use them in

TROUBLESHOOTING If you can’t get your search and replace commands to work,
there are a number of things to check. Your text editor must support grep searches,
and you should make sure you have Use Grep selected. Capitalization and spaces
matter, so check for unnoticed spaces at the beginning or end of your search term.
(You can highlight all the text in the search term to reveal spaces.) While creating
search terms, remember that just because you can’t see spaces doesn’t mean they
can be ignored. They are treated just like any other character. TextWrangler will
help clarify the structure of queries in the search dialog box by highlighting special
characters in red and wildcards in blue, leaving normal characters in black. Other
editors may have slightly different wildcards, as described in Appendix 1.

HD02new boxes8_10.indd 21 10/7/10 8:45 AMJob: 生物应用 内文 P.21 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

22 Chapter 2

creating the replacement text. Datasets often have extraneous characters which
make it diffi cult to import the fi les as-is into a graphing program or spreadsheet.

As a simple example, imagine you have a list of ordinal numbers:

5th
3rd
2nd
4th

You want to delete the letters after the numbers and have just the numbers remain
in a column. It is often helpful to think in general terms about what you are hoping
to achieve with a search and replace, before trying to translate that into a regular
expressions term. Drawing from what you have learned so far, you could write a
search term like:

\w\w\w

which would match the three characters in sequence. You want to keep the fi rst
character (that is, just the number) and remove the last two. If you try to just search
for \w\w, it will match 5t, then 3r, etc. Regular expressions are non-overlapping.
For instance, \w\w wouldn’t match 5t and then th in the fi rst line since the t
would be in both matches.

The solution is to capture certain parts of the text that
the search term fi nds and put these into the replacement
term. To do this, place parentheses around the parts of the
search term you want to save. In the example above, you
can capture the fi rst character (the number) of the three
as follows:

 (\w)\w\w

To place that captured portion in the replacement
term, use the backslash character, followed by a number
indicating which set of parentheses you extracted the text

from. In this case, you just have one set, so the replacement term would be:

\1

Searching with (\w)\w\w and replacing with \1 on the list of ordinal numbers
above gives:

5
3
2
4

Try it out in TextWrangler and move the parentheses to capture different parts of
the three characters.

To capture two parts of the text, you could use a search query like (\w)(\w\w).
In this case, the number will be inserted where you place \1 in your replacement

Other text editors and some pro-
gramming languages use $1, $2,

etc., instead of \1, \2. Confi rm the
behavior of the editor or language
you are using with a simple test before
spending time trying to fi gure out why
things are not working.

HD02new boxes8_10.indd 22 10/7/10 8:45 AMJob: 生物应用 内文 P.22 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

Regular Expressions: Powerful Search and Replace 23

term and the two letters that follow will be inserted where you place \2 in the
replacement term.

Remember that both search terms and replacement terms can contain a com-
bination of normal text and regular expressions. For example, the replacement
term Position: \1 converts the list to:

Position: 5
Position: 3
Position: 2
Position: 4

This example query will not work properly for numbers of two or more digits, but
later you will see how to accommodate many more general cases.

Quantifi ers: Matching one or more entities using +
Wildcards such as \w provide the fl exibility of changing different types of characters
at once. To be really useful, however, a search term should also be able to handle dif-
ferent counts of characters as well, and then be able to modify the replacement text
depending on what it fi nds. By default, each wildcard matches a single character.
Methods of adjusting the number of times an element such as a wildcard matches
are called quantifi ers. Plus (+) immediately after a character indicates that the term
should match one or more times in succession. For example, the term \w+ could
represent a single character, such as the letter a, or many characters, such as the
number 123.

To illustrate further, let’s return to the fi rst example of replacing genus and
species names with their abbreviated forms. Here is
our original list:

Agalma elegans
Frillagalma vitiazi
Cordagalma tottoni
Shortia galacifolia
Mus musculus

You can use \w+ by itself to generate a search term
that will match an entire word anywhere in this list
of names. Searching for one or more word charac-
ters will match with any sequence of such characters
found together up until the next non-word character (such as a space, punctuation,
or the end of the line). To preserve the fi rst letter of each word, add another non-
repeated \w before it, and capture that fi rst letter with ().

(\w)\w+

To generate the replacement term, use the captured letter (represented by \1) fol-
lowed by a period:

\1.

Instead of retyping text snippets from
scratch each time you modify them,

simply bring the text document to the
foreground and choose Undo (⌘ Z) to
return them to their original state. You can
also test search terms with Find rather than
with Replace. Type ⌘G, the shortcut for
Find Next, to fi nd each instance if there
are multiple matches.

HD02new boxes8_10.indd 23 10/7/10 8:45 AMJob: 生物应用 内文 P.23 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

24 Chapter 2

You could test this search and replace against the example list now, but you can
probably imagine why it won’t work correctly yet.

There are several ways to fi x the search term so it does work; which way is best
will depend on the rest of the data fi le you are modifying. In the present case, the
search term will be modifi ed to capture the second word independently—that is,
just the species name—so that you can add it back into the replacement text.

Try doing Replace All using the following search and replace pair:

Find Replace

(\w)\w+ (\w+) \1. \2

This combination will generate an abbreviated genus and species list as below:

A. elegans
F. vitiazi
C. tottoni
S. galacifolia
M. musculus

Notice that the second captured term is \w+, with the quantifi er placed inside the
parentheses, so all of the characters up to the next non-word character (in this case,
an end-of-line character) are preserved and can be recovered with \2. Any spaces
occurring in the text have been typed directly into the search query.

Analysis programs often require a shortened version of the taxon name sepa-
rated only by an underscore. It should be clear how to modify the replacement
term above to create a name in the format A_elegans. You can even reuse the
captured text, so as to preserve the original genus and species pair while at the
same time generating a shortened version:

Find Replace

(\w)(\w+) (\w+) \1\2 \3 \1_\3

Agalma elegans A_elegans
Frillagalma vitiazi F_vitiazi
Cordagalma tottoni C_tottoni
Shortia galacifolia S_galacifolia
Mus musculus M_musculus

With the three building blocks of regular expressions you have learned—wild-
card, quantifi er, and capture terms—you can already do some very powerful
manipulations.

For jEdit use $2.

HD02new boxes8_10.indd 24 10/7/10 8:45 AMJob: 生物应用 内文 P.24 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

Regular Expressions: Powerful Search and Replace 25

Escaping punctuation characters with \
With all these special uses for + and (), you might begin to wonder how you would
search for these characters themselves in your text. Again, the backslash is used to
modify how a character is interpreted. To remove the special meaning of punctua-
tion in a search term, put \ before the character. This is a general trick you will see in
other contexts, and is referred to as escaping the character. This technique even ap-
plies to the \ character itself: to search for \, use \\. In fact, so many punctuation
marks have special meanings that it is often a good idea to use a preceding \ when-
ever you want such a mark to be taken literally. When escaping, the \ has the op-
posite effect that it has with letters, where it gives them special meaning, as with \w.

For example, to obtain the fi nal element in Physalia physalis (Linnaeus),
start by generating a search to match each part of the text:

\w+ \w+ \(\w+\)

In this formulation, none of the text will be captured to \1 \2, etc., because the
parentheses are escaped by the preceding backslashes. Now just place parentheses
around the word characters in the fi nal element:

\w+ \w+ \((\w+)\)

The variable \1 now contains the text Linnaeus.
As you will have noticed, the appearance of regular expressions can get very

confusing very quickly. It is almost always easiest to copy an actual example of the
text you will be searching, and paste two copies of it into your text editor window.
Then progressively edit one of the copies into the search term. Once you have a
good search term typed into the text window, copy it and paste it into the search
box of the Find dialog. Provided that Use Grep is checked before you paste, the
search should be interpreted correctly. If it is not checked, on the other hand, the
program may escape out all your punctuation for you, so that your wildcards and
quantifi ers are interpreted as normal characters instead.

Here is a similar step-by-step approach to generating a complex search term,
using the same example text. Spaces have been inserted in the fi rst steps to make
the elements more distinct:

Original text Physalia physalis (Linnaeus)

Search with matches \w+ \w+ \(\w+ \)

Text with captures (\w+) (\w+) \((\w+) \)

No extra space (\w+) (\w+) \((\w+)\)

Replacement text \1_\2_\3

Applying the search leaves the text without parentheses:

Physalia_physalis_Linnaeus

HD02new boxes8_10.indd 25 10/7/10 8:45 AMJob: 生物应用 内文 P.25 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

26 Chapter 2

More special search terms: \s \t \r . \d
In addition to \w, there are many other wildcards and special characters. A few of
the most general of these are listed in Table 2.1, and a more complete list is pro-
vided in Appendix 2.

The tab character (\t) is widely used in regular expressions searches because
tabs often separate columns of data from each other. By inserting tabs between
captured text in the replacement term (for example \1\t\2\t\3 in the genus-
species-author search), you can rapidly reformat a plain text fi le into spreadsheet-
suitable format. This works with data copied from PDF fi les or Web documents—
anywhere that information occurs in a predictable manner.

As an example, consider latitude and longitude data that might be generated
by a GPS (note that there is a single space between the degrees and minutes):

-9 59.8'S -157 58.2'W
+21 17.4'N +157 51.6'W
+38 30.5'N +28 17.2'W
+40 46.1'N +14 15.8'E
+10 24.8'N +51 21.9'E

To get these into a spreadsheet with different fi elds in different columns, the goal
is to capture each degree–minute pair and separate them using the replacement
\1\t\2\t\3\t\4. For the moment, it is okay to preserve the positive and nega-
tive symbols at the beginning of each value.

The latitude and longitude formats are the same, so one general search term
can be duplicated to handle both. The job of this search term is to capture all the
values before the space, then the values between the space and the tick mark (').

First look at some of the challenges to generating a universal query for these
data:

TABLE 2.1 Some of the most common search wildcards

Search
term Meaning

\w A word character, including letters, numbers, and the underscore

\t A tab character (can also be used in replacements)

\s A white space character, including spaces, tabs, and the end-of-line

\r \n End-of-line markers (can also be used in replacements)
TextWrangler uses \r, but jEdit and Python programs will use \n

\d A digit, from 0 to 9

. Any letter, number, or symbol, except end-of-line characters

HD02new boxes8_10.indd 26 10/7/10 8:45 AMJob: 生物应用 内文 P.26 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

Regular Expressions: Powerful Search and Replace 27

• The symbol right before the number can be either a plus or a minus (+ or -).

• The number of digits used to specify degrees can have one, two, or three
 digits, so this calls for a fl exible quantifi er (+).

• There is a decimal place in the middle of the minutes value, which must be
 accounted for (and escaped so it is not read as a wildcard).

• The character at the end of the fi eld can be either N, E, S, or W.

This is a lot to think about, but well within the abilities you already have. To begin,
copy one of the lines into a new document so you can begin substituting regular ex-
pressions text for the original text. Then put parentheses around the items to capture:

Original text +38 30.5'N

Mark captures (+38) (30.5)'N

Regular expression with wildcards (.\d+) (\d+\.\d)\'\w

Replacement text \1\t\2\t

In order to read regular expressions, look at the backslash and the character that
follows it as a single entity. Otherwise, it becomes too confusing, especially with
parentheses and periods. Reading the search expression in the third line from left
to right would translate to something like:

“Any character followed by one or more digits, to be saved as \1. Next, a space symbol.
Then save as \2 one or more digits followed by a decimal point, followed by a single dig-
it. Finally, a tick mark and a single word character; these go uncaptured and are therefore
deleted.”

To search for the longitude values that follow, duplicate this general term, sep-
arating the fi elds with one or more white space characters:

(.\d+) (\d+\.\d)\'\w\s+(.\d+) (\d+\.\d)\'\w
↳first values spaces↵ ↳second values

Account for all the captured fi elds with an expanded replacement term:

\1\t\2\t\3\t\4

When generating the search term, remember that a literal period character needs
to be preceded by a backslash, and that + applies to the character immediately
before it, either by itself or in a sequence of like characters.

By default, TextWrangler and other editors apply the search term line-by-line to
a fi le. If you want to search across lines, you can end the search term with the line
ending character (\r, or sometimes \n). This is a way of joining lines, and if you
want to preserve line endings, you will have to add that \r to the end of the re-
placement term.

HD02new boxes8_10.indd 27 10/7/10 8:45 AMJob: 生物应用 内文 P.27 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

28 Chapter 2

Example: Reformatting molecular data fi les
Now that you understand the key elements of regular expressions, you are ready for
a larger reformatting job. Regular expressions are very useful when data are provid-
ed in one format but are needed in another format. The following protein sequences
(available in the examples folder as FPexamples.fta) have headers with the accession
number, a description of the protein, and the genus and species of origin in brackets:

Instead of this format, it might be preferable to work with these sequences
if the names were shortened to preserve just the initial identifi er and the genus
name, while removing spaces and leaving the sequence information untouched:

You can use the fact that each name begins with > and the species names are in []
to construct a query that only modifi es the headers and not the sequences.

Start by copying a line of data into a new fi le and identifying the portions that
you would like to capture:

Original text >CAA58790.1= GFP [Aequorea victoria]

Mark the captures with () (>CAA58790).1= GFP [(Aequorea) victoria]

Add wildcards
(extra space for clarity)

(>\w+) .+ \[(\w+) .+

Final query (no spaces) (>\w+).+\[(\w+).+

Replacement \1_\2

Result >CAA58790_Aequorea

This query fi nds and saves the fi rst word after the > symbol, up to the period,
which is not in the \w character set. The period is used as a wildcard to match
everything up to the next square bracket, indicated by \[. The fi rst word in the

>CAA58790.1= GFP [Aequorea victoria]
MSKGEELFTGVVPILVELDGDVNGQKFSVRGEGEGDATYGKLTLKFICTTGKLPVPWPTL...
>AAZ67342.1= GFP-like red fluorescent protein [Corynactis californica]
MSLSKQVLPRDVKMRYHMDGCVNGHQFIIEGEGTGKPYEGKKILELRVTKGGPLPFAFDI...
>ACX47247.1= green fluorescent protein [Haeckelia beehleri]
MEFEPEFFNKPVPLEMTLRGCVNGKEFMIFGKGEGDASKGNIKGKWILSHSEDGKCPMSW...
>ABC68474.1= red fluorescent protein [Discosoma sp. RC-2004]
MRSSKNVIKEFMRFKVRMEGTVNGHEFEIEGEGEGRPYEGHNTVKLKVTKGGPLPFAWDI...

>CAA58790_Aequorea
MSKGEELFTGVVPILVELDGDVNGQKFSVRGEGEGDATYGKLTLKFICTTGKLPVPWPTLV...
>AAZ67342_Corynactis
MSLSKQVLPRDVKMRYHMDGCVNGHQFIIEGEGTGKPYEGKKILELRVTKGGPLPFAFDIL...

HD02new boxes8_10.indd 28 10/7/10 8:45 AMJob: 生物应用 内文 P.28 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

Regular Expressions: Powerful Search and Replace 29

brackets is captured as \2 and the rest of the line after the space is discarded. It is a
little confusing that the period is acting as a wildcard, yet in this situation matches
an actual period. Also, in the search query, the > does not need to be escaped with
\, but it wouldn’t hurt to do so.

For a replacement string, you can join the captured identifi er (which includes
the > since it is inside the parentheses) and the genus using an underscore.

Comments about generating regular expressions
Regular expressions searches are picky. Although you can write
an expression to capture almost any type of text, if you specify
something and it is not there, the search will fail. Getting one
part of the query wrong often leads to the entire query failing to
match. It is therefore important to anticipate the full range of vari-
ability in your data.

Another problem can occur if hidden characters fi nd their
way into a regular expressions Find box; typically this happens
when pasting text from the document into the box. Check for
spaces and extra return characters both in your document and
in the query itself—they won’t be visible in the Find box, even if
Show Invisibles is checked in the document options.

A table of regular expression terms and their usage can be
found in Appendix 2.

SUMMARY
You have learned how to:

• Create search and replace queries and apply them in a text editor

• Use the following wildcards and special characters:

\w for letters, numbers and the underscore

. for any character except line breaks

\d for numbers

\r (or \n) for line breaks

\s for spaces, tabs, and end-of-line characters

\t for tabs

• Capture portions of the search with ()

• Reuse captured text with \1

• Escape punctuation and special characters with \

• Use the plus + quantifi er to repeat a character or wildcard

 A general approach to de-
bugging your expression is to

cut out various portions of the
search, and test different subsets
of the search to see where it fails
when you add something back in.
It can be informative to do Find
without Replace to highlight the
matching text. Proofreading a
manuscript requires close atten-
tion, but proofi ng regular expres-
sions often requires even more
careful scrutiny of every character.

HD02new boxes8_10.indd 29 10/7/10 8:45 AMJob: 生物应用 内文 P.29 101220 PPZ

01/30/2017 - RS0000000000000000000000433128 (Melanie Martin) - Practical Computing
for Biologists

