Logic

Dr. Melanie Martin
CS 4480
October 8, 2012

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Outline

* Knowledge-based agents

Wumpus world

Logic in general - models and entailment
Propositional (Boolean) logic
Equivalence, validity, satisfiability
Inference rules and theorem proving

— forward chaining

— backward chaining

— resolution

Knowledge bases

Inference engine ~e——— domain-independent algorithms

Knowledge base ~e——— domain-specific content

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
— Tell itwhat it needs to know

Then it can Ask itself what to do - answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
—i.e, data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

function KB-AGENT(percept) returns an action

static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE- PERCEPT-SENTENCE(percept, t))
action « ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE- ACTION-SENTENCE(action, t))
tet+1
return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

Wumpus World PEAS description

Performance measure
— gold +1000, death -1000

— -1 per step, -10 for using the arrow o [emsse
Environment Comez P
i s el - |a=e
— Squares adjacent to wumpus are smelly 4 | e
— Squares adjacent to pit are breezy sssses]
2 Zemaz

— Glitter iff gold is in the same square

— Shooting kills wumpus if you are facing it

— Shooting uses up the only arrow ! el

STaRT

— Grabbing picks up gold if in same square
~ Releasing drops the gold in same square

Sensors: Stench, Breeze, Glitter, Bump, Scream
Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

Fully Observable No — only local perception
Deterministic Yes — outcomes exactly specified
Episodic No — sequential at the level of actions
Static Yes — Wumpus and Pits do not move
Discrete Yes

Single-agent? Yes — Wumpus is essentially a natural feature

Exploring a wumpus world

oK

oK oK

Exploring a wumpus world

| oK oK

Exploring a wumpus world

B OK P?

Exploring a wumpus world

B oK P?

[ok[s o]

Exploring a wumpus world

3

SO 'U.1

9|
2

?
5
s

s oK|

Exploring a wumpus world

=
B OK)i
Pl
ST w

Exploring a wumpus world

.
|IOK s iOK
= | W

Exploring a wumpus world

B ok Slecs ox
L)

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn

&

Pt

Syntax defines the sentences in the language

Semantics define the "meaning" of sentences;
« ie., define truth of a sentence in a world

E.g., the language of arithmetic
* x+22yis a sentence; x2+y > {} is not a sentence
« x#22yis true iff the number x+2 is no less than the number y

+ x#22yistrueinaworld wherex=7,y=1
+ x+22yisfalse ina world where x=0,y = 6

Entailment

Entailment means that one thing follows from another:
KB Fa

Knowledge base KB entails sentence a if and only if a is true
in all worlds where KB is true

— E.g., the KB containing “the Giants won” and “the Reds won” entails
“Either the Giants won or the Reds won”

— E.g., x+y =4 entails 4 =x+y

— Entailment is a relationship between sentences (i.e., syntax) that is
based on semantics

Models

Logicians typically think in terms of models, which are formally structured
worlds with respect to which truth can be evaluated

We say m is a model of a sentence a if a is true in m

M(a) is the set of all models of a

Then KB [a iff M(KB) C M(a)

— E.g. KB = Giants won and Reds
won a = Giants won

Entailment in the wumpus world

Situation after detecting nothing in
[1,1], moving right, breeze in
[2,1]

Consider possible models for KB ? ?
assuming only pits 0
AL -A ?

3 Boolean choices = 8 possible
models

Wumpus models

gy "

5

Wumpus models

* KB = wumpus-world rules + observations

Wumpus models

KB = wumpus-world rules + observations
a, ="[1,2]is safe", KB [a,, proved by model checking

Wumpus models

* KB =wumpus-world rules + observations

Wumpus models

KB = wumpus-world rules + observations
a, = "[2,2] is safe", KB E a, /

Inference

* KB F‘ a = sentence a can be derived from KB by procedure i
* Soundness: i is sound if whenever KB }j a, it is also true that kKB F a

* Completeness: i is complete if whenever KB E o, itis also true that KB F‘
a

* Preview: we will define a logic (first-order logic) which is expressive
enough to say almost anything of interest, and for which there exists a
sound and complete inference procedure.

¢ Thatis, the procedure will answer any question whose answer follows
from what is known by the KB.

Propositional logic: Syntax
* Propositional logic is the simplest logic — illustrates basic ideas

* The proposition symbols P,, P, etc are sentences
— IfSis asentence, =S is a sentence (negation)
— IfS;and S, are sentences, S, A S, is a sentence (conjunction)
— IfS;and S, are sentences, S, v S, is a sentence (disjunction)
— IfS;and S, are sentences, S, = S, is a sentence (implication)

— IfS;and S, are sentences, S, < S, is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
EgPy Py Py

false trie false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

=S istrueiff Sisfalse

S, AS, istrueiff S,istrueand S, istrue
S,vS, istrueiff Sjistrueor S, is true
5,=$, istrueiff Sisfalseor S,istrue

ie, isfalseiff S istrueand S,isfalse

L, strueiff S,=S,istrueand S,=S, is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

=Py, A (P, v Py,) = true A (true v false) = true A true = true

Truth tables for connectives

[P Q -P [PAQ|PVQ|P = Q[P & Q]
false| false | true | false | false | true true
false| true | true | false | true | true false
true | false| false| false | true | false false
true | true | false| true | true true true ‘

Wumpus world sentences

Let P;; be true if there is a pit in [i, j].
LetB;; be true if there is a breeze in [i, j].

R1: =P,

R4: —Blrv1 no breeze in [1,1] based on percept
R5: B, breezein[2,1]based on percept

« "Pits cause breezes in adjacent squares"

R2: By, < (P, VP,
R3: By < (P VP,V Py,

¢ KB: R17R2"R3"r4"r5

Truth tables for inference

Biy | By | Py | Pio| Py | Pap | Py | Ry | Ry | Ry | Ry | Rs | KB

false | false | false | false | false | false | false | true | true | true | true | false | false
false | false | false | false | false | false | true | true | true | false | true | false | false

false | true | false | false | false | false | false | true | true | false | true | true | false

false | true | false | false | false | false | true | true | true | true | true | true | true
false | true | false | false | false | true | false | true | true | true | true | true | true
false | true | false | false | false | true | true | true | true | true | true | true | true

false | true | false | false | true | false | false | true | false | false | true | true | false

true | true | true | true | true | true | true | false | true | true | false | true | false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that « is too

Inference by enumeration

* Depth-first enumeration of all models is sound and complete

function TT-ENTAILS?(KB, @) returns true or false

symbols - a list of the proposition symbols in KB and a
return TT-Curck-ALL(KB, a, symbols,)

function T'T-CrEck-ALL(KB, a, symbols, model) returns true or false
symbols) then

if PL-TruE?(KB, model) then return PL-TRuE?(a, model)

else return true
else do

P FIRST(symbols); rest « REST(symbols)

return T HECK-ALL(KB, a, rest, EXTEND(P, true, model) and

TT-CHECK- ALL(KB, , rest, EXTEND(P, false, model)

For n symbols, time complexity is 0(2"), space complexity is O(n)

Logical equivalence

* Two sentences are logically equivalent iff true in same
models: a = R iff a |=Band|3 Ea

(aAB) = (BAa) commutativity of A
(aV B) (BVa) commutativity of V
(@ AB)Ay) = (@A (BA7)) associativity of A
((avp)Vvy) (aV (BVry)) associativity of V
—(-a) = a double-negation elimination
(@ = B) = (=B = —a) contraposition
(@ = B) = (-a V) implication elimination
(o & pB) ((= B)A(B = «)) biconditional elimination
“(aAB) = (~aV~-p) de Morgan
“(aVpB) = (raA—-p) de Morgan
(@A(BVY) = ((@AB)V(aA7y)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, Av-A, A=A (AA(A=B))=B

Validity is connected to inference via the Deduction Theorem:
kB E aif and only if (KB = a) is valid

A sentence is satisfiable if it is true in some model
e.g., Av B, c

A sentence is unsatisfiable if it is true in no models
e.g, Ar-A

Satisfiability is connected to inference via the following:
kB Faifand only if (KB A—a) is unsatisfiable

Proof methods

* Proof methods divide into (roughly) two kinds:

— Application of inference rules
* Legitimate (sound) generation of new sentences from old

+ Proof = a sequence of inference rule applications)
Can use inference rules as operators in a standard search algorithm

« Typically require transformation of sentences into a normal form

~ Model checking
+ truth table enumeration (always exponential in n)

« improved ing, e.g., Davis—Putnam-L Loveland (DPLL)

« heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Resolution

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals

clauses
Eg.,(AV-B)A(BV-CvV-D)

* Resolution inference rule (for CNF):

(Vv Vv

LV eV VBV e VY my VeV g Vi Ve Vo,

where /and m; are complementary literals.

Eg. P,
Pyis P
. ?esolution_tiis 50L|II'||d and complete F :
or propositional logic oK[* oK
prop g &—»m w

Resolution

Soundness of resolution inference rule:

SV eV VgV v =

—m= (m v ..v MgV My V.. V m,)

SV e VAV BV VB = (my VoV g Vo VeV om)

Conversion to CNF

By, = (P, VvP,,)
1. Eliminate <, replacing a <> B with (a = B)A(B = a).
(B1y = (Py, V Py A ((Py; v Pyy) = Byy)

2. Eliminate =, replacing a => B with —av B.
(=B11 V Py vV Py) A (=(Pyp v Pyy) v By)
3. Move - inwards using de Morgan's rules and double-negation:

(2B V Py, VP A ((=Py, v =Pyy) v By)

4. Apply distributivity law (A over v) and flatten:

(2By,3 v Py v Py) A (=Py; v By) A (<P v Byy)

Resolution algorithm

Proof by contradiction, i.e., show KBA—a unsatisfiable

function PL-RESOLUTION(KB, @) returns true or false
clauses « the set of clauses in the CNF representation of KB A —~a
new{}
loop do
for each C;, C; in clauses do
resolvents < PL-RESOLVE(C;, Cj)
if resolvents contains the empty clause then return true
new ¢« new U resolvents
if new C clauses then return false
clauses < clauses U new

Resolution example

* KB=(B;; < (Py,v Pys)) A= By, a==P,,

~B.VP.VP, 2V B P,
-B.vP.v B\..ﬁ B.P.VB,p PP,

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses

— Horn clause =
« proposition symbol; or
« (conjunction of symbols) = symbol
— Eg,CA(B=A)A(CAD=B)
Modus Ponens (for Horn Form): complete for Horn KBs
0y, e,y QALA =B

B

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

Forward chaining

* Idea: fire any rule whose premises are satisfied in the KB,
— add its conclusion to the KB, until query is found

P =Q
LAM = P P
BAL = M

AAP = L [
AANB = L

B %
A

Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Pop(agenda)
unless inferred]p] do
inferred]p) « true
for each Horn clause c in whose premise p appears do
decrement count|c]
if count[c] = 0 then do
if HEAD[(] = g then return true
Pusi(HEAD[c], agenda)
return false

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example Proof of completeness

. FC derives every atomic sentence that is entailed by KB
1. FCreaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m
A A a_b
4. Hence mis a model of KB

5. IfkB [g, gis true in every model of KB, including m

Backward chaining Backward chaining example

Idea: work backwards from the query g:

to prove q by BC,
check if g is known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or

2. has already failed

Backward chaining example Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

10

Backward chaining example

Forward vs. backward chaining

* FCis data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions

* May do lots of work that is irrelevant to the goal

* BCis goal-driven, appropriate for problem-solving,
— e.g., Where are my keys? How do | get into a PhD program?

* Complexity of BC can be much less than linear in size of KB

Efficient propositional inference

Two families of efficient algorithms for propositional inference:
Complete backtracking search algorithms
* DPLL algorithm (Davis, Putnam, Logemann, Loveland)

¢ Incomplete local search algorithms
— WalkSAT algorithm

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination
Aclause is true if any literal s true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A v ~B), (B v ~C), (C v A), A and B are pure, C is impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic
clauses + the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, | |)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value « FIND-PURE-SYMBOL(symbols, clauses, model)
if Pis non-null then return DPLL(clauses, symbols-P, [P = value|model])
P, value+ FIND-UNIT-CLAUSE(clauses, model)
if Pis non-null then return DPLL(clauses, symbols-P, [P = value|model])
P FIRST(symbols); rest « REST (symbols)
return DPLL(clauses, rest, [P = true|model]) or
DPLL(clauses, rest, [P = false|model])

The WalkSAT algorithm

* Incomplete, local search algorithm

« Evaluation function: The min-conflict heuristic of minimizing

the number of unsatisfied clauses

* Balance between greediness and randomness

11

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
1, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up
‘model < a random assignment of true/false to the symbols in clauses
for i = 1to maz-flips do
if model satisfies clauses then return model
clause + a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Hard satisfiability problems

* Consider random 3-CNF sentences. e.g.,

(-Dv-=-BvC)A(Bv-Av-C)Aa(-Cv =-BVE)A(EV
-DvB)A(BVEV-C)

m = number of clauses
n = number of symbols

— Hard problems seem to cluster near m/n = 4.3 (critical point)

Hard satisfiability problems

S o 4
IS o %
T T T

L '

Pr(satisfiable)

I
¥}
L

Clause/symbol ratio m/n

Hard satisfiability problems

2000 T T T
1800 | DPLL +
1600 - WalkSAT -
1400
1200
1000 -
800

Runtime

200

Xy

o 1 2 3 4 5 6 1 8
Clause/symbol ratio n/n
* Median runtime for 100 satisfiable random 3-CNF sentences, n = 50

Inference-based agents in the wumpus
world

A wumpus-world agent using propositional logic:

—Piy

Wiy

By < (P V Py V Py,
Sy = (W VW, VW,
Wi VWi,V v W,
Wy v aWy,

Wy, v =Wy,

VP

ety V Waay)

=> 64 distinct proposition symbols, 155 sentences

function PL-WUMPUS- AGENT(percept) returns an action
inputs: percept, a list, [stench, breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty
update z,y,orientation, visited based on action
if stench then TELL(KB, S;,) else TELL(KB, ~ S,,)
if breeze then TELL(KB, B,) else TELL(KB, - B,)
if glitter then action < grab
else if plan is nonempty then action < Pop(plan)
else if for some fringe square [i.f], ASK(KB, (~ P,y A — Wi)) is true or
for some fringe square [ij], ASK(KB, (P, ; Vv Wi;)) is false then do
plan « A*-GRAPH-SEARCH(ROUTE-PB([z,y], orientation, (1], visited))
action < POP(plan)
else action « a randomly chosen move
return action

12

Ly, A FacingRight' A Forward" = L

t

Expressiveness limitation of
propositional logic

KB contains "physics" sentences for every single square

For every time t and every location [x,y],
t

XLy

Rapid proliferation of clauses

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

syntax: formal structure of sentences
semantics: truth of sentences wrt models

entailment: necessary truth of one sentence given another
nference: deriving sentences from other sentences
soundness: derivations produce only entailed sentences

completeness: derivations can produce all entailed sentences

Wumpus world requires the abiliy to represent partial and negated information, reason by cases,
etc.

Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

Propositional logic lacks expressive power

13

