Search - Chapter 6

Dr. Melanie Martin CS 4480

Chapter 6 Constraint Satisfaction Problems

- Constraint Satisfaction Problems (CSP)
- · Backtracking search for CSPs
- · Local search for CSPs

Constraint satisfaction problems (CSPs)

- Standard search problem:
 state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Constraint language is a simple example of a formal representation
- Allows useful general-purpose algorithms with more power than standard

Example: Map-Coloring

- Variables WA, NT, Q, NSW, V, SA, T
 Domains D_i = {red,green,blue}
 Constraints: adjacent regions must have different colors
- e.g., WA \neq NT, or (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue), (blue,red),(blue,green)}

Example: Map-Coloring

• Solutions are complete and consistent assignments, e.g., WA = red, NT = green,Q = red,NSW = green,V = red,SA = blue,T = green

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, arcs are constraints

Varieties of CSPs

- · Discrete variables

 - n variables, domain size d → O(d²) complete assignments
 e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
 infinite domains:

 - integers, strings, etc.
 e.g., job scheduling, variables are start/end days for each job
 need a constraint language, e.g., StartJob₃ + 5 ≤ StartJob₃
- · Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- · Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- · Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints

Example: Cryptarithmetic

- Variables: FTUWROX₁X₂X₃
- Domains: {0,1,2,3,4,5,6,7,8,9}
- Constraints: Alldiff (F,T,U,W,R,O)
 - $O + O = R + 10 \cdot X_1$ X₁ + W + W = U + 10 \cdot X₂

 - $-X_{2}^{1}+T+T=O+10\cdot X_{3}$
 - $-X_3 = F, T \neq 0, F \neq 0$

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 e.g., which class is offered when and where?
- Transportation scheduling
- · Factory scheduling
- Notice that many real-world problems involve real-valued variables

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment → fail if no legal assignments
- Goal test: the current assignment is complete
- This is the same for all CSPs
 Every solution appears at depth n with n variables
 → use depth-first search
- Path is irrelevant, so can also use complete-state formulation 4. b = (n - l)d at depth l, hence $n! \cdot d^n$ leaves

Backtracking search

- Variable assignments are commutative, i.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each node \rightarrow b = d and there are dⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n ≈ 25

Backtracking search

 $\begin{array}{ll} \textbf{function Backtracking-Search}(\textit{csp}) \ \textbf{returns a solution, or failure} \\ \textbf{return Recursive-Backtracking}(\{\},\textit{csp}) \end{array}$

 $\mathbf{function} \ \ \mathbf{RECURSIVE\text{-}BACKTRACKING} (\mathit{assignment, csp}) \ \mathbf{returns} \ \mathsf{a} \ \mathsf{solution}, \ \mathsf{or}$

function RECURSIVE State of the return assignment if assignment is complete then return assignment var — SELECT-UNASSIGNED-VARIABLE (Variables/csp), assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment according to Constraints[csp] then add { var = value } to assignment result ← RECURSIVE-BACKTRACKING(assignment, csp) if result ≠ failue then return result

if result \neq failue then return result remove { var = value } from assignment return failure

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Most constrained variable

• Most constrained variable: choose the variable with the fewest legal values

 a.k.a. minimum remaining values (MRV) heuristic

Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

Forward checking

- · Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Forward checking

- Idea
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff

for every value x of X there is some allowed y

Arc consistency

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff

for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked

Arc consistency

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff

for every value x of X there is some allowed y

- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\{X_1,\ X_2,\ \dots,\ X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in cspwhile queue is not empty do $(X_i, X_j) \leftarrow \text{Remove-First}(\text{queue})$ if RM-INCONSISTENT-VALUES (X_i, X_j) then for each X_k in NEIGHBORS $[X_i]$ do add (X_k, X_k) to queue function RM-Inconsistent-Values (X_i, X_j) returns true iff remove a value
$$\label{eq:removed} \begin{split} & removed \leftarrow false \\ & \text{for each } x \text{in } \mathsf{DOMAIN}[X_i] \text{ do} \\ & \text{if no value } y \text{ in } \mathsf{DOMAIN}[X_i] \text{ allows } (x,y) \text{ to satisfy constraint}(X_i, \ X_j) \\ & \text{then } \text{defect } x \text{ from } \mathsf{DOMAIN}[X_i]; \ removed \leftarrow true \\ & \text{return } removel \\ \end{split}$$

• Time complexity: O(n2d3)

Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 — allow states with unsatisfied constraints
 — operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:

 - choose value that violates the fewest constraints
 i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n=10,000,000)

Summary

- CSPs are a special kind of problem:
 states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- · Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- · Iterative min-conflicts is usually effective in practice