9/13/15

Some previous projects

Twenty Questions
Library Search Assistant
Euclid's Game

FedEx on the Go
Battleship Game
Line-Following Robot
Connect Four

CS Course Chooser

Some previous projects

Learning Checkers

Shoot ‘em Up

Agent Using Genetic Algorithm
Guess Who

Color Memory Game

TicTac Chat

Eight Queens

Super Mario Bros. Al

Some previous projects

Blackjack with various Al solution
Intelligent Pong

Wine without Whining

Neural Net OCR

The Sherpa — hike recommender
Virtual Pet

Sudoku

Lego Mindstorms color sorter

Some previous projects

Maze Solving

Spam Filtering

Intelligent Crew Scheduler

Machine Translation: English/Japanese
Cross-Country Game

Chatbot

Turing Test

Search

Dr. Melanie Martin
CS 4480

Chapter 3

Search

— Problem-solving agents
— Problem types

— Problem formulation

— Example problems

— Basic search algorithms

Problem-solving agents

9/13/15

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation
state < UPDATE-STATE(state, percept)
if seq is empty then do
goal <~ FORMULATE-GOAL(state)
problem «+ FORMULATE- PROBLEM(state, goal)
seq 4 SEARCH(problem)
action + F1RST(seq)
seq < REST(seq)
return action

Example: Romania

* On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest

Formulate goal:
— be in Bucharest

Formulate problem:
— states: various cities
— actions: drive between cities

Find solution:
— sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Fagaras

%9

Problem types

Deterministic, fully observable - single-state problem
— Agent knows exactly which state it will be in; solution is a sequence

Non-observable = sensorless problem (conformant problem)
— Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable = contingency problem
— percepts provide new information about current state

— often interleave} search, execution

Unknown state space = exploration problem

Example: vacuum world

Single-state, start in #5. 1= 2
Solution? I'” | e | |'B

= el

=

] =

=L L

Example: vacuum world

Single-state, start in #5.
Solution? [Right, Suck]

N

"=

*|w =

| [

Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

|
|

le] L]#
|

i B e B

Example: vacuum world

* Sensorless, start in

(1,234,567, eg, 1 ’ | | 2‘ ‘dﬂ
Right goes to {2,4,6,8} R | B R | R
Solution?
[Right,Suck, Left,Suck] 3 "‘:ﬂ | 4 ’ ‘A‘
5 [6]
L4
« Contingency 7 |£| | 8 I I‘gl

Nondeterministic: Suck may
dirty a clean carpet
— Partially observable: location, dirt at current location.
— Percept: [L, Clean], i.e., start in #5 or #7
Solution?

9/13/15

Example: vacuum world

Sensorless, start in

{1,2,3,4,5,6,7,8} e.g., 1 ’.=Q| | 2 ’ ‘dg‘
Right goes to {2,4,6,8} R | AR L- W]
Solution?
¢ 3 J 4 dﬂ
Right,Suck, Left, Suck,
[Right,Suck, Left,Suck] ””| | ’“‘ ‘
5 | =) 6 =)
R R
Contingency
— Nondeterministic: Suck may 7 |=4 | al I‘ﬂl
dirty a clean carpet

— Partially observable: location, dirt at current location.
Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

Single-state problem formulation
A problem is defined by four items:

1. initial state e.g., "at Arad"

2. actions or successor function S(x) = set of action—state pairs
— e.g., S(Arad) = {<Arad > Zerind, Zerind>, ... }

3. goal test, can be
— explicit, e.g., x = "at Bucharest"
— implicit, e.g., Checkmate(x)

4. path cost (additive)

— e.g., sum of distances, number of actions executed, etc.
— ¢(xa,y)is the step cost, assumed to be >0

* Asolution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex
-> state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
— e.g., "Arad - Zerind" represents a complex set of possible routes, detours,
rest stops, etc.

For guaranteed realizability, any real state "in Arad* must get to some real
state "in Zerind"

(Abstract) solution =
— set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem

Vacuum world state space graph

LD

PR LT ED (LRI

O LT D

e states?

* actions?

* goal test?
e path cost?

.

Vacuum world state space graph

P LT #0170
=L X

states? integer dirt and robot location
actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

9/13/15

Example: The 8-puzzle

HEaa an
ENOREaR
) el e

Start State Goal State

states?
actions?

goal test?
path cost?

Example: The 8-puzzle

HEaa 2]
BENONERR
B ERE0ER

Start State Goal State

 states? locations of tiles

* actions? move blank left, right, up, down
* goal test? = goal state (given)

* path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

states?: real-valued coordinates of robot joint angles parts of
the object to be assembled

P

C @)'f
i)

actions?: continuous motions of robot joints
goal test?: complete assembly

path cost?: time to execute

Tree search algorithms

* Basicidea:
— offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a.~expanding
states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Tree search example

Tree search example

Tree search example

9/13/15

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GoAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe « INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors +— the empty set

for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
s<—a new NODE
PARENT-NODE[s] ¢~ node; ACTION[s] < action; STATE[s] < result
PATH-COST[s] ¢~ PATH-COST[node] + STEP-COST(node, action, s)
DEeprH|[s] ¢~ DEPTH[ROdE] + 1
add s to successors

return successors

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes state,
parent node, action, path cost g(x), depth

parent, action

depth =6

State s | Node
oo

Tate
The Expa ‘ ’ | | s ‘ m ° ious fields and

using the SuccessorFn of the problem to create the corresponding
states.

Search strategies

* Asearch strategy is defined by picking the order of node expansion
« Strategies are evaluated along the following dimensions:

— completeness: does it always find a solution if one exists?

— time complexity: number of nodes generated

— space complexity: maximum number of nodes in memory

— optimality: does it always find a least-cost solution?

* Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be o)

Uninformed search strategies

Uninformed search strategies use only the
information available in the problem definition

Breadth-first search
Uniform-cost search

Depth-first search
Depth-limited search
Iterative deepening search

Breadth-first search
* Expand shallowest unexpanded node

* Implementation:

— fringe is a FIFO queue, i.e., new successors go at

end D@

9/13/15

Breadth-first search

* Expand shallowest unexpanded node

* Implementation: fringe is a FIFO queue,
i.e., new successors go at end

(4)
> 9

Breadth-first search

* Expand shallowest unexpanded node

* Implementation: fringe is a FIFO queue, i.e.,
new successors go at end

(4)
(&) >
© ©

Properties of breadth-first search
* Complete? Yes (if b is finite)
o Time? 1+b+b2+b3+... +b? + b(b%-1) = O(b%1)
« Space? O(b?*1) (keeps every node in memory)
* Optimal? Yes (if cost = 1 per step)

¢ Space is the bigger problem (more than time)

Uniform-cost search

* Expand least-cost unexpanded node

* Implementation:
— frontier = priority queue ordered by path cost g(n)

* Equivalent to breadth-first if step costs all equal
* Complete? Yes, if step cost 2 €
« Time? # of nodes with g < cost of optimal solution, O(bceiins(C*/ €)) where C*

is the cost of the optimal solution
« Space? # of nodes with g < cost of optimal solution, O(beeiing(c*/€))

* Optimal? Yes — nodes expanded in increasing order of g(n)

Depth-first search
* Expand deepest unexpanded node

* Implementation:

— fringe = LIFO queue, i.e., put successors at front
2O

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

9/13/15

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

9/13/15

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

e Complete? No: fails in infinite-depth spaces, spaces with
loops
— Modify to avoid repeated states along path

-> complete in finite spaces

* Time? O(b™): terrible if m is much larger than d
— but if solutions are dense, may be much faster than breadth-first

* Space? O(bm), i.e., linear space!

¢ Optimal? No

Depth-limited search

= depth-first search with depth limit /,
i.e., nodes at depth / have no successors

M function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-D LS(MAKE-NODE(INITIAL-S TATE[problem]), problem, limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem)(STATE[node]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Iterative deepening search

9/13/15

ure
inputs: problem, a problem
for depth« 0 to co do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, o fail-

Iterative deepening search / =0

Limit=0 *Q [

Iterative deepening search [=1

Limit=1 o)

T

Iterative deepening search [/ =2

Limit=2 »Q

e
A s

Iterative deepening search [=3

Limit=3 »@®

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d with
branching factor b:
Nps=b0+bT+b2+... + b%2+ bd-1 + pd
Number of nodes generated in an iterative deepening search to depth d
with branching factor b:
Nips = (d+1)b0 + d bAL + (d-1)bA2 + ... + 3b%2 +2b%1 + 1b¢
Forb=10,d=5,
— Npg=1+10+100 + 1,000 + 10,000 + 100,000 = 111,111

— Nps =6+ 50+ 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening

search
Complete? Yes

Time? (d+1)b° +d b + (d-1)b2 +... + b? = O(b9)

Space? O(bd)

Optimal? Yes, if step cost =1

9/13/15

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time obHY) oy o™ OF) oY)
Space obHY o@lC) opm) Ol 0(bd)
Optimal? Yes Yes No No Yes

Repeated states

Failure to detect repeated states can turn a
linear problem into an exponential one!

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed <« an empty set

fringe < INSERT(MAKE-NODE(INITIAL- STATE[problem)), fringe)

loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

if STATE[n0de] is not in closed then
add STATE[node] to closed

fringe + INSERTALL(EXPAND(node, problem), fringe)

* Variety of uninformed search strategies

Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be

explored

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

Outline

Chapter 3 — Informed Search
— Best-first search

— Greedy best-first search

— A’ search

— Heuristics

Chapter 4 — Coming Soon
— Local search algorithms

— Hill-climbing search

— Simulated annealing search
— Local beam search

— Genetic algorithms

10

Best-first search

 Idea: use an evaluation function f(n) for each node
— estimate of "desirability"

-> Expand most desirable unexpanded node

¢ Implementation:
Order the nodes in frontier in decreasing order of desirability

Special cases:
— greedy best-first search
— A’ search

9/13/15

Heuristic

Problem solving by experimental methods
— Trial and error

Heuristic function h(n)

— Takes node as input

— Depends only on state of node

— Estimated cost of cheapest path from node n to a goal
node

— Numerical estimate of the “goodness” of a state

Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

e.g., hg p(n) = straight-line distance from n to
Bucharest

Greedy best-first search expands the node
that appears to be closest to goal

Properties of greedy best-first
search

Complete? No — can get stuck in loops, e.g.,
lasi > Neamt - lasi > Neamt >

Time? O(b™), but a good heuristic can give
dramatic improvement

Space? O(b™) -- keeps all nodes in memory

Optimal? No

A" search

Idea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal

Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h*(n), where h*(n) is the true cost to reach the goal
state from n.

An admissible heuristic never overestimates the cost to reach
the goal, i.e., it is optimistic

Example: hg 5(n) (never overestimates the actual road
distance)

Theorem: If h(n) is admissible, A” using TREE-SEARCH is
optimal

1

Optimality of A" (proof)

Suppose some suboptimal goal G, has been generated and is in the fringe. Let n be
an unexpanded node in the fringe such that n is on a shortest path to an optimal
goal G.

Start

1) o
f(G,) =g(G,) since h(G,) =0
8(G,) > g(G) since G, is suboptimal
f(G) =g(G) since h(G) =0
f(G) >f(G) () = g(G,) > 8(6) = f(G)

9/13/15

Optimality of A" (proof)

+ Suppose some suboptimal goal G, has been generated and is in the fringe. Let n be an
unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

Start
n
@ G,
< (G >f(G) from previous slide
-+ h(n) <h*(n) since h is admissible — h*(n) is true cost
+ gl +h(n) <gn)+h(n)
< fn) <f(G) <f(G,)

Hence f(G,) > f(n), and A" will never select G, for expansion

. . *
Optimality of A
A" expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes
Contour i has all nodes with f=f, where f, < f,;

Consistent heuristics

* A heuristic is consistent if for every node n, every successor n' of n
generated by any action g, the estimated cost of reaching the goal from n
is no greater than the step cost of getting to n’ plus the estimated cost of
reaching the goal from n”:

h(n) <c(n,a,n') + h(n')

« If his consistent, we have
f(n') = g(n') + h(n')
=g(n) +c(n,a,n’) +h(n')
2g(n) +h(n)
=f(n)

* i.e., f(n)is non-decreasing along any path.

* Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Properties of A*

Complete? Yes (unless there are infinitely
many nodes with f < f(G))

Time? Exponential
Space? Keeps all nodes in memory

Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:
* hy(n) = number of misplaced tiles

* hy(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

an
B
[

Start State Goal State

12

Admissible heuristics

E.g., for the 8-puzzle:
* hy(n) = number of misplaced tiles

* hy(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

HBaRn
BN ama
el e

Start State Goal State

]
4]

* hy(S)=?8
* hy(S) =7 3+1+2+2+2+3+3+2 =18

9/13/15

Dominance

If hy(n) 2 hy(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of nodes expanded):

d=121DS = 3,644,035 nodes
A'(hy) = 227 nodes
A'(h,) = 73 nodes
d=24 IDS = too many nodes
A'(hy) = 39,135 nodes
A'(h,) = 1,641 nodes

Relaxed problems

* A problem with fewer restrictions on the actions is called a
relaxed problem

* The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem

« If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h;(n) gives the shortest solution

* If the rules are relaxed so that a tile can move to any adjacent
square, then h,(n) gives the shortest solution

13

