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Uncertainty	
Let	ac/on	At	=	leave	for	airport	t	minutes	before	flight	
Will	At	get	me	there	on	/me?	
	
Problems:	

1.  par/al	observability	(road	state,	other	drivers'	plans,	etc.)	
2.  noisy	sensors	(traffic	reports)	
3.  uncertainty	in	ac/on	outcomes	(flat	/re,	etc.)	
4.  immense	complexity	of	modeling	and	predic/ng	traffic	

	

Hence	a	purely	logical	approach	either	
1.  risks	falsehood:	“A25	will	get	me	there	on	/me”,	or	
2.  leads	to	conclusions	that	are	too	weak	for	decision	making:	
	

“A25	will	get	me	there	on	/me	if	there‘s	no	accident	on	the	bridge	and	it	
doesn’t	rain	and	my	/res	remain	intact	etc	etc.”	

(A1440	might	reasonably	be	said	to	get	me	there	on	/me	but	I'd	have	to	stay	
overnight	in	the	airport…)	

	

Methods	for	handling	uncertainty	
•  Default	or	nonmonotonic	logic:	

–  Assume	my	car	does	not	have	a	flat	/re	
–  Assume	A25	works	unless	contradicted	by	evidence	
	

•  Issues:	What	assump/ons	are	reasonable?	How	to	handle	contradic/on?	

•  Rules	with	fudge	factors:	
–  A25	|→0.3	get	there	on	/me	
–  Sprinkler	|→	0.99	WetGrass	
–  WetGrass	|→	0.7	Rain	
	

•  Issues:	Problems	with	combina/on,	e.g.,	Sprinkler	causes	Rain??	

•  Probability	
–  Model	agent's	degree	of	belief	
–  Given	the	available	evidence,	
–  A25	will	get	me	there	on	/me	with	probability	0.04	

	

Probability	
Probabilis/c	asser/ons	summarize	effects	of	

–  laziness:	failure	to	enumerate	excep/ons,	qualifica/ons,	etc.	
–  ignorance:	lack	of	relevant	facts,	ini/al	condi/ons,	etc.	
	

Subjec/ve	probability:	
•  Probabili/es	relate	proposi/ons	to	agent's	own	state	of	

knowledge	
	 	e.g.,	P(A25	|	no	reported	accidents)	=	0.06	

	
These	are	not	asser/ons	about	the	world	

	
Probabili/es	of	proposi/ons	change	with	new	evidence:	
	 	e.g.,	P(A25	|	no	reported	accidents,	5	a.m.)	=	0.15	

	

Making	decisions	under	
uncertainty	

Suppose	I	believe	the	following:	
P(A25	gets	me	there	on	/me	|	…)	 	=	0.04		
P(A90	gets	me	there	on	/me	|	…)	 	=	0.70		
P(A120	gets	me	there	on	/me	|	…)	 	=	0.95		
P(A1440	gets	me	there	on	/me	|	…)		=	0.9999		
	

•  Which	ac/on	to	choose?	
	Depends	on	my	preferences	for	missing	flight	vs.	/me	spent	
wai/ng,	etc.	
–  U/lity	theory	is	used	to	represent	and	infer	preferences	
–  Decision	theory	=	probability	theory	+	u/lity	theory	
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Syntax	
•  Basic	element:	random	variable	

–  Refers	to	a	part	of	the	world	whose	status	is	ini/ally	unknown	
–  Assigns	a	numerical	value	to	each	outcome	of	an	experiment	

•  Similar	to	proposi/onal	logic:	possible	worlds	defined	by	assignment	of	values	to	random	
variables.	

	

•  Boolean	random	variables	
e.g.,	Cavity	(do	I	have	a	cavity?)	

	
•  Discrete	random	variables	

e.g.,	Weather	is	one	of	<sunny,rainy,cloudy,snow>	
	

•  Domain	values	must	be	exhaus/ve	and	mutually	exclusive	
•  Elementary	proposi/on	constructed	by	assignment	of	a	value	to	a	random	variable:		
								e.g.,	Weather	=	sunny,	Cavity	=	false		(abbreviated	as	¬cavity)	
	

•  Complex	proposi/ons	formed	from	elementary	proposi/ons	and	standard	logical	connec/ves												
e.g.,	Weather	=	sunny	∨	Cavity	=	false	

•  Also	con/nuous:	/me,	distance,	weight	

Syntax	
•  Atomic	event:	A	complete	specifica/on	of	the	state	of	the	

world	about	which	the	agent	is	uncertain	
	

E.g.,	if	the	world	consists	of	only	two	Boolean	variables	Cavity	and	
Toothache,	then	there	are	4	dis/nct	atomic	events:	

	
Cavity	=	false	∧Toothache	=	false	
Cavity	=	false	∧	Toothache	=	true	
Cavity	=	true	∧	Toothache	=	false	
Cavity	=	true	∧	Toothache	=	true	

	
	

•  Atomic	events	are	mutually	exclusive	and	exhaus/ve	
•  AKA:	Sample	space	is	the	set	of	elementary	outcomes		
	

Axioms	of	probability	
•  For	any	proposi/ons	A,	B	
•  (Events)	

– 0	≤	P(A)	≤	1	
– P(true)	=	1	and	P(false)	=	0	
– P(A	∨	B)	=	P(A)	+	P(B)	-	P(A	∧	B)	

	

Prior	probability	
•  Prior	or	uncondi/onal	probabili/es	of	proposi/ons	

e.g.,	P(Cavity	=	true)	=	0.1	and	P(Weather	=	sunny)	=	0.72	correspond	to	belief	prior	to	arrival	of	any	
(new)	evidence	

	

•  Probability	distribu/on	gives	values	for	all	possible	assignments:	
P(Weather)	=	<0.72,0.1,0.08,0.1>	(normalized,	i.e.,	sums	to	1)	

	 	 		

•  Joint	probability	distribu/on	for	a	set	of	random	variables	gives	the	probability	of	every	
atomic	event	on	those	random	variables	

P(Weather,Cavity)	=	a	4	×	2	matrix	of	values:	
	

	

	Weather	= 				 	sunny 	rainy	 	cloudy 	snow		
	Cavity	=	true	 	0.144 	0.02			 	0.016	 	0.02	
	Cavity	=	false 	0.576 	0.08			 	0.064	 	0.08	

	
	

•  Every	ques/on	about	a	domain	can	be	answered	by	the	joint	distribu/on	
•  Note	these	are	intersec/ons	

  

Condi/onal	probability	
•  Condi/onal	or	posterior	probabili/es	

e.g.,	P(cavity	|	toothache)	=	0.8	
i.e.,	given	that	toothache	is	all	I	know	

	
	

•  Nota/on	for	condi/onal	distribu/ons:	
P(Cavity	|	Toothache)	=	2-element	vector	of	2-element	vectors)	
	

	
•  If	we	know	more,	e.g.,	cavity	is	also	given,	then	we	have	

P(cavity	|	toothache,cavity)	=	1	
	
•  New	evidence	may	be	irrelevant,	allowing	simplifica/on,	e.g.,	

P(cavity	|	toothache,	sunny)	=	P(cavity	|	toothache)	=	0.8	
	

•  This	kind	of	inference,	sanc/oned	by	domain	knowledge,	is	crucial	
	

Condi/onal	probability	
•  Defini/on	of	condi/onal	probability:	

P(a	|	b)	=	P(a	∧	b)	/	P(b)	if		P(b)	>	0	
	

•  Product	rule	gives	an	alterna/ve	formula/on:	
P(a	∧	b)	=	P(a	|	b)	P(b)	=	P(b	|	a)	P(a)	

	
	

•  A	general	version	holds	for	whole	distribu/ons,	e.g.,	
P(Weather,Cavity)	=	P(Weather	|	Cavity)	P(Cavity)	
	
	

•  Chain	rule	is	derived	by	successive	applica/on	of	product	rule:	
									P(a,	b)	=						P(a)												P(b	|	a)		

P(X1,	…,Xn)	=	P(X1,...,Xn-1)	P(Xn	|	X1,...,Xn-1)	
																	 	=	P(X1,...,Xn-2)	P(Xn-1	|	X1,...,Xn-2)	P(Xn	|	X1,...,Xn-1)	
																		 	=	…	
																		 	=	πi=	1

n		P(Xi	|	X1,	…	,Xi-1)	
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Inference	by	enumera/on	
•  Start	with	the	joint	probability	distribu/on:	
	

	
	
•  For	any	proposi/on	φ,	sum	the	atomic	events	where	it	is	true:	

P(φ)	=	Σω:ω╞φ	P(ω)	
	

Inference	by	enumera/on	
•  Start	with	the	joint	probability	distribu/on:	
	

	
	
•  For	any	proposi/on	φ,	sum	the	atomic	events	where	it	is	true:	

P(φ)	=	Σω:ω╞φ	P(ω)	
	
•  P(toothache)	=	0.108	+	0.012	+	0.016	+	0.064	=	0.2	
	

Inference	by	enumera/on	
•  Start	with	the	joint	probability	distribu/on:	
	

	
	
•  For	any	proposi/on	φ,	sum	the	atomic	events	where	it	is	true:	

P(φ)	=	Σω:ω╞φ	P(ω)	
	
•  P(toothache	v	cavity)	=	0.108	+	0.012	+	0.016	+	0.064	+	0.072	

+	0.008=	0.28	
	

Inference	by	enumera/on	
•  Start	with	the	joint	probability	distribu/on:	
	

•  Can	also	compute	condi/onal	probabili/es:	
	

	P(¬cavity	|	toothache)	 	=	P(¬cavity	∧	toothache)	
	 	 	 	 																									 	P(toothache)	
	 	 	 	 	=	 							0.016+0.064	
	 	 	 	 				0.108	+	0.012	+	0.016	+	0.064	
	 	 	 	 	=	0.4	

	

Normaliza/on	

•  Denominator	can	be	viewed	as	a	normaliza/on	constant	α	
	
P(Cavity	|	toothache)	=	α,	P(Cavity,toothache)		

=	α,	[P(Cavity,toothache,catch)	+	P(Cavity,toothache,¬	catch)]	
=	α,	[<0.108,0.016>	+	<0.012,0.064>]		
=	α,	<0.12,0.08>	=	<0.6,0.4>	

	
α	=	0.2	
	

General	idea:	compute	distribu/on	on	query	variable	by	fixing	evidence	variables	
and	summing	over	hidden	variables	

Inference	by	enumera/on,	contd.	
Typically,	we	are	interested	in		

	the	posterior	joint	distribu/on	of	the	query	variables	Y		
	given	specific	values	e	for	the	evidence	variables	E	

	
Let	the	hidden	variables	be	H	=	X	–	Y	–	E	
	
Then	the	required	summa/on	of	joint	entries	is	done	by	summing	out	the	hidden	variables:	

P(Y	|	E	=	e)	=	αP(Y,E	=	e)	=	αΣhP(Y,E=	e,	H	=	h)	
	
•  The	terms	in	the	summa/on	are	joint	entries	because	Y,	E	and	H	together	exhaust	the	set	of	

random	variables	
	
•  Obvious	problems:	
	

1.  Worst-case	/me	complexity	O(dn)	where	d	is	the	largest	arity	
	

2.  Space	complexity	O(dn)	to	store	the	joint	distribu/on	
	

3.  How	to	find	the	numbers	for	O(dn)	entries?	
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Inference	by	enumera/on,	contd.	
	
	

•  ENUMERATE-JOINT-ASK	algorithm		
–  Answering	probabilis/c	queries	for	discrete	variables	
–  Complete	
–  For	n	Boolean	variables	table	size	is	O(2n)		

•  Time	to	process	also	O(2n)		
–  Not	prac/cal	for	anything	realis/c	

	

Independence	
•  A	and	B	are	independent	iff	

	P(A|B)	=	P(A)				or	P(B|A)	=	P(B)					or	P(A,	B)	=	P(A)	P(B)	
	

	
	
	
P(Toothache,	Catch,	Cavity,	Weather)	

	=	P(Toothache,	Catch,	Cavity)	P(Weather)	
	

•  32	entries	reduced	to	12;	for	n	independent	biased	coins,	O(2n)	→O(n)	
	

•  Absolute	independence	powerful	but	rare	
	

•  Den/stry	is	a	large	field	with	hundreds	of	variables,	none	of	which	are	independent.	What	to	
do?	

	

Condi/onal	independence	
•  P(Toothache,	Cavity,	Catch)	has	23	–	1	=	7	independent	entries	
	

•  If	I	have	a	cavity,	the	probability	that	the	probe	catches	in	it	doesn't	depend	on	
whether	I	have	a	toothache:	
(1)	P(catch	|	toothache,	cavity)	=	P(catch	|	cavity)	

•  The	same	independence	holds	if	I	haven't	got	a	cavity:	
(2)	P(catch	|	toothache,¬cavity)	=	P(catch	|	¬cavity)	

	
	

•  Catch	is	condi/onally	independent	of	Toothache	given	Cavity:	
P(Catch	|	Toothache,Cavity)	=	P(Catch	|	Cavity)	

	
	

•  Equivalent	statements:	
P(Toothache	|	Catch,	Cavity)	=	P(Toothache	|	Cavity)	

	
P(Toothache,	Catch	|	Cavity)	=	P(Toothache	|	Cavity)	P(Catch	|	Cavity)	

	

Condi/onal	independence	contd.	
•  Write	out	full	joint	distribu/on	using	chain	rule:	
	

	P(Toothache,	Catch,	Cavity)	
	=	P(Toothache	|	Catch,	Cavity)	P(Catch,	Cavity)	

	
	=	P(Toothache	|	Catch,	Cavity)	P(Catch	|	Cavity)	P(Cavity)	

	
	=	P(Toothache	|	Cavity)	P(Catch	|	Cavity)	P(Cavity)	

	
	I.e.,	2	+	2	+	1	=	5	independent	numbers	

•  In	most	cases,	the	use	of	condi/onal	independence	reduces	the	size	of	the	
representa/on	of	the	joint	distribu/on	from	exponen/al	in	n	to	linear	in	n.	

•  Condi/onal	independence	is	our	most	basic	and	robust	form	of	knowledge	
about	uncertain	environments.	

	

Bayes'	Rule	
•  Product	rule	P(a∧b)	=	P(a	|	b)	P(b)	=	P(b	|	a)	P(a)	
	

	⇒	Bayes'	rule:	P(a	|	b)	=	P(b	|	a)	P(a)	/	P(b)	
	

•  or	in	distribu/on	form		
	

	 	P(Y|X)	=	P(X|Y)	P(Y)	/	P(X)	=	αP(X|Y)	P(Y)	
	

•  Useful	for	assessing	diagnos/c	probability	from	causal	probability:	
	

–  P(Cause|Effect)	=	P(Effect|Cause)	P(Cause)	/	P(Effect)	
	

–  E.g.,	let	M	be	meningi/s,	S	be	s/ff	neck:	
P(m|s)	=	P(s|m)	P(m)	/	P(s)	=	0.8	×	0.0001	/	0.1	=	0.0008	

	
–  Note:	posterior	probability	of	meningi/s	s/ll	very	small!	

	

Bayes'	Rule	and	condi/onal	
independence	

P(Cavity	|	toothache	∧	catch)		
=	αP(toothache	∧	catch	|	Cavity)	P(Cavity)		
=	αP(toothache	|	Cavity)	P(catch	|	Cavity)	P(Cavity)		
	

	
•  This	is	an	example	of	a	naïve	Bayes	model:	
	

P(Cause,Effect1,	…	,Effectn)	=	P(Cause)	πiP(Effecti|Cause)	
	

	

	
•  Total	number	of	parameters	is	linear	in	n	
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Summary	
•  Probability	is	a	rigorous	formalism	for	uncertain	knowledge	
	
•  Joint	probability	distribu/on	specifies	probability	of	every	

atomic	event	
•  Queries	can	be	answered	by	summing	over	atomic	events	
	
•  For	nontrivial	domains,	we	must	find	a	way	to	reduce	the	joint	

size	
	
•  Independence	and	condi/onal	independence	provide	the	

tools	
	


