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Fifth Generation

• Skip 4th generation: ADA
– Data abstraction
– Concurrent programming

• Paradigms
– Functional: ML, Lisp
– Logic: Prolog
– Object Oriented: C++, Java
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Chapter 9:
List Processing: LISP

• History of LISP
– McCarthy at MIT was looking to adapt high-

level languages (Fortran) to AI - 1956
– AI needs to represent relationships among

data entities
• Linked lists and other linked structures are

common
– Solution: Develop list processing library for

Fortran
– Other advances were also made

• IF function:  X = IF(N .EQ. 0, ICAR(Y), ICDR(Y))
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What do we need?

• Recursive list processing functions
• Conditional expression

• First implementation
– IBM 704
– Demo in 1960

• Common Lisp standardized
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Example LISP Program
(defun make-table (text table)

(if (null text)

table

(make-table (cdr text)

(update-entry table (car text))

)

)

)

• S-expression is used (for Symbolic language)
– Other languages use M-expression (for Meta)
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Central Idea: Function
Application

• There are 2 types of languages
– Imperative

• Like Fortran, Algol, Pascal, C, etc.
• Routing execution from one assignment statement to

another

– Applicative
• LISP
• Applying a function to arguments

– (f a1 a2 … an)
• No need for control structures
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Prefix Notation

• Prefix notation is used in LISP
– Sometimes called Polish notation (Jan Lukasiewicz)

• Operator comes before arguments
• (plus 1 2) same as 1 + 2 in infix
• (plus 5 4 7 6 8 9)

• Functions cannot be mixed because of the list
structure

• (As in Algol: 1 + 2 – 3)
• LISP is fully parenthesized
• No need for precedence rules
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cond Function

(cond
((null x) 0)
((eq x y) (f x))
(t (g y)) )

• Equivalent to
if null(x) then 0
elsif x = y then f(x)
else g(y)



9

Function Definition
(defun make-table (text table)

(if (null text)
table
(make-table (cdr text)

(update-entry table (car text))
)

)
)

• Function definition is achieved by calling a
function(!) called defun, with arguments
– Name (make-table)
– Parameters (text table)
– Body (if …)
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The List is the Data Structure

• Lists contain symbolic data
(set ‘text ‘(to be or not to be))
– Lists like (to be or not to be) can be manipulated

like numbers in other languages (compared,
concatenated, split, passed to functions,…)

• Atoms
– The list (to be or not to be) has 4 atoms

• to, be, or, not
– Functions are provided for manipulation of atoms

• Lists of lists
((to be or not to be) (that is the question))
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Programs Are Lists
• Programs are also represented as lists

– (make-table text nil)
• Can be a list

– with atoms make-table, text, and nil
• Can be a function

– ‘make-table’ with 2 arguments

• How do we tell apart the program from a data
list?
– Quoted lists are not interpreted:

• (set ‘text ‘(to be or not to be))

– Unquoted ones are interpreted
• (set ‘text (to be or not to be)) function: to
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LISP Is Interpreted

• Most LISP systems provide interactive
interpreters
– One can enter commands into the

interpreter, and the system will respond
> (plus 2 3)
5
> (eq (plus 2 3) (difference 9 4))
t means ‘true’
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Pure vs Pseudo-Functions

• Pure functions
– plus, eq, …
– Only effect is the computation of a value

• Pseudo-functions
– Has side-effect; more like a procedure
– set

• (set ‘text ‘(to be or not to be))
• Side effect:

– Sets the value of text to (to be or not to be)
• Return value:

– (to be or not to be)
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Data Structures

• Primitives
– Numbers

• Operations: plus, minus, times, eq, etc.
– Non-numeric atoms

• Strings of characters used as symbols
– Much like enumerated types in Pascal
– Not used as strings

• Operations: eq
• Special atoms

– t: true
– nil: false; non-existent atom; empty list
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Data Constructor
• The data constructor is the list
• Lists can have 0, 1 or more elements

– Empty list: ‘() or nil
• All lists are non-atomic (except empty

list)
> (atom ‘()) or  (atom nil)  or  (atom 5)
t
> (atom ‘(to be)) or (atom ‘(()))
nil
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Car and Cdr

• Accessing parts of a list
– Car

• Accesses first element of the list
>(car ‘(to be or not to be))
to
>(car ‘((to be) or (not to be)))
(to be)
• Returns an element

– cdr
• Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))
(be or not to be)
• Returns a list
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Combining car and cdr
• How do we select the second element?

>(car (cdr ‘(to be or not to be)))
be

• Third?
>(car (cdr (cdr ‘(to be or not to be))))
or

• How about this?
(set ‘DS ‘( (Don Smith) 45 30000 (Aug 4 80)))

– Select day of hire
>(car (cdr (car (cdr (cdr (cdr DS))))))
4

• This can be simplified:
>(cadadddr DS)
4
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Defining Functions

• Define functions to replace cadadddr
(defun hire-date (r) (cadddr r))
(defun day (d) (cadr d))
– Now we can select the day of the hire date

as
(year (hire-date DS))

• This is more readable and more
maintainable
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Constructing Lists

• Need inverse of car and cdr
– car: get first of list
– cdr: get rest of list

• Inverse:
– cons: append first of list to rest of list

>(cons ‘to ‘(be or not to be))
(to be or not to be)
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

– Returns a list
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Appending Lists
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

• But we’d like (to be or not to be)
>(append ‘(to be) ‘(or not to be))
(to be or not to be)

• How would we implement append ?
– We need to extract and cons the last

element of the first list successively
(defun append (L M)

(if (null L)
  M
  (cons (car L) (append (cdr L) M)) ))
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List Representation
• Lists are represented as linked lists

(to be or not to be)

((to 2) (be 2))
to be or not to be nil

to 2

/

be 2

/ /
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Origins of car and cdr
• First LISP was designed for the IBM 704

– 1 word had 2 fields
• Address field
• Decrement field

– car: “Content of Address part of Register”
– cdr: “Content of Decrement part of Register”

to be or

…

car  cdr
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Implementation of cons

• car and cdr simply return the respective
parts of the register

• cons has the job of constructing a new
register using two pointers
– Allocate new memory location
– Fill in left and right parts of new location

(cons ‘to ‘(be or not to be))

to be or not to be nil
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Sublists Can Be Shared
(set ‘L ‘(or not to be))
(set ‘M ‘(to be))
(set ‘N (cons (cadr M) L))
(set ‘O (cons (car M) N))

to

/

be or not to

/

be

M L

N

O
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List Structures Can Be Modified
• Functions discussed so far do not

modify lists
• Modifying lists is possible via

– replaca (replace address part)
– replacd (replace decrement part)

• It is possible that more than one symbol
points to a list
– which can be modified using replaca and

replacd
– This can cause unexpected problems (like

equivalence in Fortran)
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Iteration by Recursion

• Iteration is done by recursion
• Iteration is mostly needed to perform an

operation on every element of a list
– This can be done using combination of

• testing for end of list,
• operating on first element, and
• recursing on rest of the list
(defun plus-red (a)

(if (null a)  nil
    (plus (car a) (plus-red (cdr a))) ))

– Notice: No array bounds are needed! Function is
very general
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Iteration = Recursion

• Theoretically, recursion and iteration have the
same power, and are equivalent

• One can be translated to the other (although
may not be practical)
– Recursion  iteration

• Use iteration and keep track of auxiliary information in an
explicit stack

– Iteration  recursion
• Need to pass control information (variables)


