CS 4480
LISP

September 10, 2010

Based on slides by
Istvan Jonyer
Book by
MacLennan
Chapters 9, 10, 11

Fifth Generation

« Skip 4th generation: ADA

— Data abstraction
— Concurrent programming

« Paradigms
— Functional: ML, Lisp
— Logic: Prolog
— Object Oriented: C++, Java

Chapter 9:
List Processing: LISP

» History of LISP

— McCarthy at MIT was looking to adapt high-
level languages (Fortran) to Al - 1956

— Al needs to represent relationships among
data entities

* Linked lists and other linked structures are
common

— Solution: Develop list processing library for
Fortran

— Other advances were also made
« IF function: X = IF(N .EQ. 0, ICAR(Y), ICDR(Y))

What do we need?

Recursive list processing functions
Conditional expression

First implementation
—|BM 704
— Demo in 1960

Common Lisp standardized

Example LISP Program

(defun make-table (text table)
(1if (null text)
table
(make—-table (cdr text)
(update-entry table (car text))

S-expression is used (for Symbolic language)
— Other languages use M-expression (for Meta)

Central Idea: Function
Application

* There are 2 types of languages

— Imperative
 Like Fortran, Algol, Pascal, C, etc.
* Routing execution from one assignment statement to
another
— Applicative
* LISP
* Applying a function to arguments
— (faja,...a,)
* No need for control structures

Prefix Notation

* Prefix notation is used in LISP

— Sometimes called Polish notation (Jan Lukasiewicz)
» Operator comes before arguments

* (plus 12) same as 1 + 2 in infix
* (plus547689)

 Functions cannot be mixed because of the list

structure
 (Asin Algol: 1+2 - 23)
* LISP is fully parenthesized
* No need for precedence rules

cond Function

(cond
((null x) O
((eq x y)
(t (g y)))
* Equivalent to
i1f null (x) then O
elsif x = y then f (x)

)
£ x))

else g(y)

Function Definition

(defun make-table (text table)
(if (null text)
table
(make-table (cdr text)
(update—-entry table (car text))
)
)

Function definition is achieved by calling a
function(!) called defun, with arguments
— Name (make-table)

— Parameters (text table)
— Body (if ...)

The List is the Data Structure

 Lists contain symbolic data

(set ‘text ‘(to be or not to be))

— Lists like (to be or not to be) can be manipulated
like numbers in other languages (compared,
concatenated, split, passed to functions,...)

o Atoms
— The list (to be or not to be) has 4 atoms
 to, be, or, not
— Functions are provided for manipulation of atoms
» Lists of lists
((to be or not to be) (that is the question))

10

Programs Are Lists

* Programs are also represented as lists

— (make-table text nil)

« Can be a list
— with atoms make-table, text, and nil

« Can be a function
— ‘make-table’ with 2 arguments

 How do we tell apart the program from a data
list?
— Quoted lists are not interpreted:
* (set ‘text ‘(to be or not to be))

— Unquoted ones are interpreted
 (set ‘text (to be or not to be)) function: to ,,

LISP Is Interpreted

* Most LISP systems provide interactive
Interpreters

— One can enter commands into the
interpreter, and the system will respond

> (plus 2 3)
5

> (eq (plus 2 3) (difference 9 4))
t means ‘true’

12

Pure vs Pseudo-Functions

* Pure functions

— plus, eq, ...

— Only effect is the computation of a value
« Pseudo-functions

— Has side-effect; more like a procedure

— set

* (set ‘text (to be or not to be))

« Side effect:
— Sets the value of text to (to be or not to be)

* Return value:
— (to be or not to be)

13

Data Structures

Primitives
— Numbers
» Operations: plus, minus, times, eq, etc.

— Non-numeric atoms

 Strings of characters used as symbols
— Much like enumerated types in Pascal
— Not used as strings

» Operations: eq

» Special atoms
— t: true
— nil: false; non-existent atom; empty list

14

Data Constructor

 The data constructor is the list

 Lists can have 0, 1 or more elements
— Empty list: °() or nil

 All lists are non-atomic (except empty
list)
> (atom ‘()) or (atom nil) or (atom 5)
t
> (atom ‘(to be)) or (atom ‘(()))

nil
15

Car and Cdr

* Accessing parts of a list
— Car

» Accesses first element of the list
>(car ‘(to be or not to be))

to

>(car ‘((to be) or (not to be)))

(to be)

* Returns an element

— cdr
» Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))
(be or not to be)
* Returns a list 16

Combining car and car

How do we select the second element?
>(car (cdr ‘(to be or not to be)))
be
Third?
>(car (cdr (cdr ‘(to be or not to be))))
or

How about this?

(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))
— Select day of hire

>(car (cdr (car (cdr (cdr (cdr DS))))))

4

This can be simplified:

>(cadadddr DS)
4

17

Defining Functions

* Define functions to replace cadadddr
(defun hire-date (r) (cadddrr))
(defun day (d) (cadr d))

— Now we can select the day of the hire date
as

(year (hire-date DS))

* This Is more readable and more
maintainable

18

Constructing Lists

* Need inverse of car and cdr
— car: get first of list
— cdr: get rest of list

e |nverse:

— cons: append first of list to rest of list
>(cons ‘to ‘(be or not to be))
(to be or not to be)
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

— Returns a list

19

Appending Lists

>(cons ‘(to be) (or not to be))
((to be) or not to be)

« But we'd like (to be or not to be)

>(append ‘(to be) ‘(or not to be))
(to be or not to be)

 How would we implement append ?

— We need to extract and cons the last
element of the first list successively
(defun append (L M)
(if (null L)
M
(cons (car L) (append (cdr L) M))))

List Representation

 Lists are represented as linked lists
(to be or not to be)

—> > —1— | 1+—> —1—> —1—> \

e T

to be or not to be nil
((to 2) (be 2))
L "L/

¥ v

| gk 1IN g Nk

v v v v

to 2 be 2

21

Origins of car and cdr

* First LISP was designed for the IBM 704

— 1 word had 2 fields
» Address field
« Decrement field
— car: "Content of Address part of Register”

— cdr: “Content of Decrement part of Register”

car cdr

vy

| >| ’I g

22

Implementation of cons

« car and cdr simply return the respective
parts of the reqister

* cons has the job of constructing a new
register using two pointers

— Allocate new memory location

— Fill in left and right parts of new location
(cons ‘toT:‘be or not to be))
|

—1— | 1+—> —1—> —1—> \

A S e S S

—> to be or not to be nil

Sublists Can Be Shared

(
(set ‘M “(to be))
(
(

M
v

set ‘L ‘(or not to be))

set ‘N (cons (cadr M) L))
set ‘O (cons (car M) N))

1>

/

v

be «——

«—

R
<
<
<

g

=Z >

24

List Structures Can Be Modified

» Functions discussed so far do not
modify lists

* Modifying lists is possible via
— replaca (replace address part)
— replacd (replace decrement part)

* Itis possible that more than one symbol
points to a list

— which can be modified using replaca and
replacd

— This can cause unexpected problems (like
equivalence in Fortran) 25

Iteration by Recursion

* |teration is done by recursion

* |teration is mostly needed to perform an
operation on every element of a list

— This can be done using combination of

« testing for end of list,

« operating on first element, and

 recursing on rest of the list

(defun plus-red (a)

(if (null @) nil
(plus (car a) (plus-red (cdr a)))))

— Notice: No array bounds are needed! Function is

very general 26

lteration = Recursion

* Theoretically, recursion and iteration have the
same power, and are equivalent

* One can be translated to the other (although
may not be practical)

— Recursion = iteration

« Use iteration and keep track of auxiliary information in an
explicit stack

— lteration = recursion
* Need to pass control information (variables)

27

