
1

CS 4480
LISP

September 10, 2010
Based on slides by

Istvan Jonyer
Book by

MacLennan
Chapters 9, 10, 11

2

Fifth Generation

• Skip 4th generation: ADA
– Data abstraction
– Concurrent programming

• Paradigms
– Functional: ML, Lisp
– Logic: Prolog
– Object Oriented: C++, Java

3

Chapter 9:
List Processing: LISP

• History of LISP
– McCarthy at MIT was looking to adapt high-

level languages (Fortran) to AI - 1956
– AI needs to represent relationships among

data entities
• Linked lists and other linked structures are

common
– Solution: Develop list processing library for

Fortran
– Other advances were also made

• IF function: X = IF(N .EQ. 0, ICAR(Y), ICDR(Y))

4

What do we need?

• Recursive list processing functions
• Conditional expression

• First implementation
– IBM 704
– Demo in 1960

• Common Lisp standardized

5

Example LISP Program
(defun make-table (text table)

(if (null text)

table

(make-table (cdr text)

(update-entry table (car text))

)

)

)

• S-expression is used (for Symbolic language)
– Other languages use M-expression (for Meta)

6

Central Idea: Function
Application

• There are 2 types of languages
– Imperative

• Like Fortran, Algol, Pascal, C, etc.
• Routing execution from one assignment statement to

another

– Applicative
• LISP
• Applying a function to arguments

– (f a1 a2 … an)
• No need for control structures

7

Prefix Notation

• Prefix notation is used in LISP
– Sometimes called Polish notation (Jan Lukasiewicz)

• Operator comes before arguments
• (plus 1 2) same as 1 + 2 in infix
• (plus 5 4 7 6 8 9)

• Functions cannot be mixed because of the list
structure

• (As in Algol: 1 + 2 – 3)
• LISP is fully parenthesized
• No need for precedence rules

8

cond Function

(cond
((null x) 0)
((eq x y) (f x))
(t (g y)))

• Equivalent to
if null(x) then 0
elsif x = y then f(x)
else g(y)

9

Function Definition
(defun make-table (text table)

(if (null text)
table
(make-table (cdr text)

(update-entry table (car text))
)

)
)

• Function definition is achieved by calling a
function(!) called defun, with arguments
– Name (make-table)
– Parameters (text table)
– Body (if …)

10

The List is the Data Structure

• Lists contain symbolic data
(set ‘text ‘(to be or not to be))
– Lists like (to be or not to be) can be manipulated

like numbers in other languages (compared,
concatenated, split, passed to functions,…)

• Atoms
– The list (to be or not to be) has 4 atoms

• to, be, or, not
– Functions are provided for manipulation of atoms

• Lists of lists
((to be or not to be) (that is the question))

11

Programs Are Lists
• Programs are also represented as lists

– (make-table text nil)
• Can be a list

– with atoms make-table, text, and nil
• Can be a function

– ‘make-table’ with 2 arguments

• How do we tell apart the program from a data
list?
– Quoted lists are not interpreted:

• (set ‘text ‘(to be or not to be))

– Unquoted ones are interpreted
• (set ‘text (to be or not to be)) function: to

12

LISP Is Interpreted

• Most LISP systems provide interactive
interpreters
– One can enter commands into the

interpreter, and the system will respond
> (plus 2 3)
5
> (eq (plus 2 3) (difference 9 4))
t means ‘true’

13

Pure vs Pseudo-Functions

• Pure functions
– plus, eq, …
– Only effect is the computation of a value

• Pseudo-functions
– Has side-effect; more like a procedure
– set

• (set ‘text ‘(to be or not to be))
• Side effect:

– Sets the value of text to (to be or not to be)
• Return value:

– (to be or not to be)

14

Data Structures

• Primitives
– Numbers

• Operations: plus, minus, times, eq, etc.
– Non-numeric atoms

• Strings of characters used as symbols
– Much like enumerated types in Pascal
– Not used as strings

• Operations: eq
• Special atoms

– t: true
– nil: false; non-existent atom; empty list

15

Data Constructor
• The data constructor is the list
• Lists can have 0, 1 or more elements

– Empty list: ‘() or nil
• All lists are non-atomic (except empty

list)
> (atom ‘()) or (atom nil) or (atom 5)
t
> (atom ‘(to be)) or (atom ‘(()))
nil

16

Car and Cdr

• Accessing parts of a list
– Car

• Accesses first element of the list
>(car ‘(to be or not to be))
to
>(car ‘((to be) or (not to be)))
(to be)
• Returns an element

– cdr
• Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))
(be or not to be)
• Returns a list

17

Combining car and cdr
• How do we select the second element?

>(car (cdr ‘(to be or not to be)))
be

• Third?
>(car (cdr (cdr ‘(to be or not to be))))
or

• How about this?
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))

– Select day of hire
>(car (cdr (car (cdr (cdr (cdr DS))))))
4

• This can be simplified:
>(cadadddr DS)
4

18

Defining Functions

• Define functions to replace cadadddr
(defun hire-date (r) (cadddr r))
(defun day (d) (cadr d))
– Now we can select the day of the hire date

as
(year (hire-date DS))

• This is more readable and more
maintainable

19

Constructing Lists

• Need inverse of car and cdr
– car: get first of list
– cdr: get rest of list

• Inverse:
– cons: append first of list to rest of list

>(cons ‘to ‘(be or not to be))
(to be or not to be)
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

– Returns a list

20

Appending Lists
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

• But we’d like (to be or not to be)
>(append ‘(to be) ‘(or not to be))
(to be or not to be)

• How would we implement append ?
– We need to extract and cons the last

element of the first list successively
(defun append (L M)

(if (null L)
 M
 (cons (car L) (append (cdr L) M))))

21

List Representation
• Lists are represented as linked lists

(to be or not to be)

((to 2) (be 2))
to be or not to be nil

to 2

/

be 2

/ /

22

Origins of car and cdr
• First LISP was designed for the IBM 704

– 1 word had 2 fields
• Address field
• Decrement field

– car: “Content of Address part of Register”
– cdr: “Content of Decrement part of Register”

to be or

…

car cdr

23

Implementation of cons

• car and cdr simply return the respective
parts of the register

• cons has the job of constructing a new
register using two pointers
– Allocate new memory location
– Fill in left and right parts of new location

(cons ‘to ‘(be or not to be))

to be or not to be nil

24

Sublists Can Be Shared
(set ‘L ‘(or not to be))
(set ‘M ‘(to be))
(set ‘N (cons (cadr M) L))
(set ‘O (cons (car M) N))

to

/

be or not to

/

be

M L

N

O

25

List Structures Can Be Modified
• Functions discussed so far do not

modify lists
• Modifying lists is possible via

– replaca (replace address part)
– replacd (replace decrement part)

• It is possible that more than one symbol
points to a list
– which can be modified using replaca and

replacd
– This can cause unexpected problems (like

equivalence in Fortran)

26

Iteration by Recursion

• Iteration is done by recursion
• Iteration is mostly needed to perform an

operation on every element of a list
– This can be done using combination of

• testing for end of list,
• operating on first element, and
• recursing on rest of the list
(defun plus-red (a)

(if (null a) nil
 (plus (car a) (plus-red (cdr a)))))

– Notice: No array bounds are needed! Function is
very general

27

Iteration = Recursion

• Theoretically, recursion and iteration have the
same power, and are equivalent

• One can be translated to the other (although
may not be practical)
– Recursion  iteration

• Use iteration and keep track of auxiliary information in an
explicit stack

– Iteration  recursion
• Need to pass control information (variables)

