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Conditional probability

* Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all | know

* Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

* If we know more, e.g., cavity is also given, then we have
P(cavity | toothache,cavity) = 1

* New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

« This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:
P(a | b)=P(a A b)/ P(b) if P(b)>0

Product rule gives an alternative formulation:
P(aab)=P(a | b)P(b)=P(b | a) P(a)

A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)
* (View as a set of 4 x 2 equations, not matrix mult.)
Chain rule is derived by successive application of product rule:

P(Xy, o Xy) = P(Xye X 1) PX, | Xypere X, 1)
= Py Xog) Py | Xy Xo ) PO | Xy Xe)

= 1170 PO | Xy Xig)

Inference by enumeration

« Start with the joint probability distribution:

toothache = toothache

catch| = carch|catch | = carch
caviry | .108| .012 .072 | .008
- cavity | 016 .064 144 | .576

* For any proposition ¢, sum the atomic events where it is true:

P() = 1 P(w)

Inference by enumeration

« Start with the joint probability distribution:

toothache — toothache

catch| = catch|catch| = catch
cavity | 108 .012 .072| .008
- cavity | 016 .064 144 | 576

* For any proposition ¢, sum the atomic events where it is true:
P(D) = 3,y 1 P(W)

* P(toothache)=0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference by enumeration

« Start with the joint probability distribution:

toothache — toothache

catch| = catch| catch| = catch
caviry | .108| .012 | .072| .008
—caviy | .016] .064 | .144| 576

* For any proposition ¢, sum the atomic events where it is true:

P() = 1 P(w)

* P(toothache v cavity) = 0.108 + 0.012 + 0.016 + 0.064 + 0.072

+0.008=0.28




Inference by enumeration

* Start with the joint probability distribution:

toothache — toothache

catch| = catch|catch| = catch
caviry | .108] .012 | .072| .008
—caviry ||.016] .064 || .144 | .576

* Can also compute conditional probabilities:

P(-cavity | toothache) = P(=cavity A toothache)
P(toothache)
= +
0.108 +0.012 + 0.016 + 0.064
=04
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Normalization

toothache — toothache

carch| — catch|catch| — carch
cavity |.1oa .o12| .072 | .008
— caviry |.u1e| |.oo4| 144 576

Denominator can be viewed as a normalization constant a

P(Cavity | toothache) = a, P(Cavity,toothache)
=aq, [P(Cavity, ,catch) + P(Cavity, ,~ catch)]
=@, [<0.108,0.016> + <0.012,0.064>]
=0a,<0.12,0.08> = <0.6,0.4>

a=0.2

General idea: compute distribution on query variable by fixing evidence variables
and summing over hidden variables

Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbe H=X-Y-E

Then the required summation of joint entries is done by summing out the hidden variables:

P(Y | E=e)=aP(Y,E=e)=az,P(Y,E=e H=h)

The terms in the summation are joint entries because Y, E and H together exhaust the set of
random variables

« Obvious problems:

1. Worst-case time complexity O(d") where d is the largest arity
2. Space complexity O(d") to store the joint distribution

3. How to find the numbers for O(d") entries?

Inference by enumeration, contd.

ENUMERATE-JOINT-ASK algorithm (p. 477)
— Answering probabilistic queries for discrete variables
— Complete
— For n Boolean variables table size is O(2")
« Time to process also O(2")
— Not practical for anything realistic

Independence

Aand B are independent iff
P(A[B)=P(A) orP(B/A)=P(B) or P(A, B)=P(A) P(B)

Cavity
Cavity decomposes o | Toothache Catch
Toothache ~ Catch -
Weather icatn
eather

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

32 entries reduced to 12; for n independent biased coins, 0(2") >0(n)

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to
do?

Conditional independence

P(Toothache, Cavity, Catch) has 23 — 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on
whether | have a toothache:

(1) P(catch | toothache, cavity) = P(catch [ cavity)
The same independence holds if | haven't got a cavity:
(2) P(catch | toothache, - cavity) = P(catch | —cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)




Conditional independence contd.

*  Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)
l.e.,, 2+ 2 +1=5independent numbers

* In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

* Conditional independence is our most basic and robust form of knowledge
about uncertain environments.
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Bayes' Rule

Product rule P(anb) = P(a | b) P(b) = P(b | a) P(a)
> Bayes' rule: P(a | b) =P(b | a) P(a) / P(b)
or in distribution form
P(Y[X) = P(X]Y) P(Y) / P(X) = aP(X]Y) P(Y)
Useful for assessing diagnostic probability from causal probability:
— P(Cause|Effect) = P(Effect| Cause) P(Cause) / P(Effect)

— E.g., let M be meningitis, S be stiff neck:
P(m|s) = P(s|m) P(m) / P(s) = 0.8 x 0.0001 / 0.1 = 0.0008

— Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional
independence

P(Cavity | toothache A catch)
= aP(toothache A catch | Cavity) P(Cavity)
= aP(toothache | Cavity) P(catch | Cavity) P(Cavity)
* This is an example of a naive Bayes model:
P(Cause,Effect,, ... ,Effect,) = P(Cause) P(Effect;| Cause)
SN U
G =

* Total number of parameters is linear in n

Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every
atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint
size

Independence and conditional independence provide the
tools




