
9/10/12

1

1

CS 4480
LISP

September 10, 2012
Programming Languages Book by

MacLennan
Chapters 9, 10, 11

Project Proposal

•  Due September 14, 2012 - UPLOAD
•  Proposal should include:

– Header with
•  Your Name
•  Course
•  Date
•  Project Proposal

2

Project Proposal

•  Working Title of Project

•  Body of Proposal:
– Project Description

•  What you plan to address
•  What you plan to leave out

– Tentative list of sources (APA Format)

3 4

Programming Languages

•  Paradigms
– Functional: ML, Lisp
– Logic: Prolog
– Object Oriented: C++, Java

5

Chapter 9:
List Processing: LISP

•  History of LISP
– McCarthy at MIT was looking to adapt high-

level languages (Fortran) to AI - 1956
– AI needs to represent relationships among

data entities
•  Linked lists and other linked structures are

common
– Solution: Develop list processing library for

Fortran

6

What do we need?

•  Recursive list processing functions
•  Conditional expression

•  First implementation
–  IBM 704
– Demo in 1960

•  Common Lisp standardized

9/10/12

2

7

Central Idea: Function
Application

•  There are 2 types of languages
–  Imperative

•  Like Fortran, Algol, Pascal, C, etc.
•  Routing execution from one assignment statement to

another

–  Applicative
•  LISP
•  Applying a function to arguments

–  (f a1 a2 … an)
•  No need for control structures

8

Prefix Notation

•  Prefix notation is used in LISP
–  Sometimes called Polish notation (Jan Lukasiewicz)

•  Operator comes before arguments
•  (plus 1 2) same as 1 + 2 in infix
•  (plus 5 4 7 6 8 9)

•  Functions cannot be mixed because of the list
structure

•  (As in Algol: 1 + 2 – 3)
•  LISP is fully parenthesized
•  No need for precedence rules

9

Function Definition
(defun make-table (text table)
 (if (null text)
 table
 (make-table (cdr text)
 (update-entry table (car text))
)
)

)

•  Function definition is achieved by calling a
function(!) called defun, with arguments
–  Name (make-table)
–  Parameters (text table)
–  Body (if …) 10

cond Function

(cond
((null x) 0)
((eq x y) (f x))
(t (g y)))

•  Equivalent to
if null(x) then 0
elsif x = y then f(x)
else g(y)

11

The List is the Data Structure

•  Lists contain symbolic data
(set ‘text ‘(to be or not to be))
–  Lists like (to be or not to be) can be manipulated

like numbers in other languages (compared,
concatenated, split, passed to functions,…)

•  Atoms
–  The list (to be or not to be) has 4 atoms

•  to, be, or, not
–  Functions are provided for manipulation of atoms

•  Lists of lists
((to be or not to be) (that is the question))

12

Programs Are Lists
•  Programs are also represented as lists

–  (make-table text nil)
•  Can be a list

–  with atoms make-table, text, and nil
•  Can be a function

–  ‘make-table’ with 2 arguments

•  How do we tell apart the program from a data
list?
–  Quoted lists are not interpreted:

•  (set ‘text ‘(to be or not to be))
–  Unquoted ones are interpreted

•  (set ‘text (to be or not to be)) function: to

9/10/12

3

13

LISP Is Interpreted

•  Most LISP systems provide interactive
interpreters
– One can enter commands into the

interpreter, and the system will respond
> (plus 2 3)
5
> (eq (plus 2 3) (difference 9 4))
t means ‘true’

14

Pure vs Pseudo-Functions

•  Pure functions
–  plus, eq, …
–  Only effect is the computation of a value

•  Pseudo-functions
–  Has side-effect; more like a procedure
–  set

•  (set ‘text ‘(to be or not to be))
•  Side effect:

–  Sets the value of text to (to be or not to be)
•  Return value:

–  (to be or not to be)

15

Data Structures

•  Primitives
–  Numbers

•  Operations: plus, minus, times, eq, etc.
–  Non-numeric atoms

•  Strings of characters used as symbols
–  Much like enumerated types in Pascal
–  Not used as strings

•  Operations: eq
•  Special atoms

–  t: true
–  nil: false; non-existent atom; empty list

16

Data Constructor
•  The data constructor is the list
•  Lists can have 0, 1 or more elements

– Empty list: ‘() or nil
•  All lists are non-atomic (except empty

list)
> (atom ‘()) or (atom nil) or (atom 5)
t
> (atom ‘(to be)) or (atom ‘(()))
nil

17

Car and Cdr

•  Accessing parts of a list
–  Car

•  Accesses first element of the list
>(car ‘(to be or not to be))
to
>(car ‘((to be) or (not to be)))
(to be)
•  Returns an element

–  cdr
•  Accesses rest of the list (list without first element)
>(cdr ‘(to be or not to be))
(be or not to be)
•  Returns a list 18

Combining car and cdr
•  How do we select the second element?

>(car (cdr ‘(to be or not to be)))
be

•  Third?
>(car (cdr (cdr ‘(to be or not to be))))
or

•  How about this?
(set ‘DS ‘((Don Smith) 45 30000 (Aug 4 80)))

–  Select day of hire
>(car (cdr (car (cdr (cdr (cdr DS))))))
4

•  This can be simplified:
>(cadadddr DS)
4

9/10/12

4

19

Defining Functions

•  Define functions to replace cadadddr
(defun hire-date (r) (cadddr r))
(defun day (d) (cadr d))
– Now we can select the day of the hire date

as
(year (hire-date DS))

•  This is more readable and more
maintainable

20

Constructing Lists

•  Need inverse of car and cdr
–  car: get first of list
–  cdr: get rest of list

•  Inverse:
–  cons: append first of list to rest of list

>(cons ‘to ‘(be or not to be))
(to be or not to be)
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

–  Returns a list

21

Appending Lists
>(cons ‘(to be) ‘(or not to be))
((to be) or not to be)

•  But we’d like (to be or not to be)
>(append ‘(to be) ‘(or not to be))
(to be or not to be)

•  How would we implement append ?
– We need to extract and cons the last

element of the first list successively
(defun append (L M)

 (if (null L)
 M
 (cons (car L) (append (cdr L) M)))) 22

List Representation
•  Lists are represented as linked lists

 (to be or not to be)

 ((to 2) (be 2))
to be or not to be nil

to 2

/

be 2

/ /

23

Origins of car and cdr
•  First LISP was designed for the IBM 704

– 1 word had 2 fields
•  Address field
•  Decrement field

– car: “Content of Address part of Register”
– cdr: “Content of Decrement part of Register”

to be or

…

car cdr

24

Implementation of cons
•  car and cdr simply return the respective

parts of the register
•  cons has the job of constructing a new

register using two pointers
– Allocate new memory location
– Fill in left and right parts of new location

 (cons ‘to ‘(be or not to be))

to be or not to be nil

9/10/12

5

25

Sublists Can Be Shared
(set ‘L ‘(or not to be))
(set ‘M ‘(to be))
(set ‘N (cons (cadr M) L))
(set ‘O (cons (car M) N))

to

/

be or not to

/

be

M L

N

O

26

List Structures Can Be Modified
•  Functions discussed so far do not

modify lists
•  Modifying lists is possible via

–  replaca (replace address part)
–  replacd (replace decrement part)

•  It is possible that more than one symbol
points to a list
– which can be modified using replaca and

replacd
– This can cause unexpected problems (like

equivalence in Fortran)

27

Iteration by Recursion

•  Iteration is done by recursion
•  Iteration is mostly needed to perform an

operation on every element of a list
–  This can be done using combination of

•  testing for end of list,
•  operating on first element, and
•  recursing on rest of the list
(defun plus-red (a)

 (if (null a) nil
 (plus (car a) (plus-red (cdr a)))))

–  Notice: No array bounds are needed! Function is
very general

28

Iteration = Recursion

•  Theoretically, recursion and iteration have the
same power, and are equivalent

•  One can be translated to the other (although
may not be practical)
–  Recursion à iteration

•  Use iteration and keep track of auxiliary information in an
explicit stack

–  Iteration à recursion
•  Need to pass control information (variables)

