9/21/12

Beyond Classical Search

* Chapter 4
— Hill Climbing
Search — Simulated Annealing
— Beam Search
Dr. Melanie Martin — Genetic Algorithms
CS 4480

September 21, 2012

Local search algorithms Local search algorithms

In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

Does path matter?
— Chess

— Robot

— 8queens

— Circuit design

— Job scheduling

State space = set of "complete" configurations
— Find configuration satisfying constraints, e.g., n-queens

. * Optimization Problems
In such cases, we can use local search algorithms — Goal is best state according to some “objective” function
— keep a single "current"” state, try to improve it * No goal test or path cost

— “Reproductive fitness” in nature

— Local search may work well

Local search algorithms Example: n-queens

* Idea: in current state
» Expand

* Put n queens on an n x n board with no two
» Move to a neighbor

queens on the same row, column, or diagonal

¢ Pros:

» Usually Constant Memory |:> I:>
» Can often find reasonable solution in infinite or continuous
state spaces

Hill-climbing search

* "Like climbing Everest in thick fog with
amnesia"

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node
current + MAKE-NODE(INITIAL-STATEproblem])
loop do
neighbor« a highest-valued successor of current

if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor

9/21/12

Hill-Climbing Search

* Problem: depending on initial state, can get
stuck in local maxima

objective function

lobal maximum
8

shoulder

local maximum

"flat” local maxinmm

space
coment
state

Hill-Climbing Search

« If using cost function will want global
minimum
objective function

global maxirmm

—

shoulder

local maximum

"flat” local maxinmmm

space
coment
state

Hill-Climbing Search

* What to do when stuck?
* Stochastic Hill-Climbing

— Choose successor at random

— Probability based on steepness
* First Choice Hill-Climbing

— Generate random successors until one is better

Hill-Climbing Search

What to do when stuck?
Random-Restart Hill-Climbing

— Series of hill-climbing searches from randomly
generated initial states

— Complete

— Random sideways moves escape from shoulders
— But loop on flat maxima

Hill-climbing search: 8-queens problem

h = number of pairs of queens that are attacking each other, either directly or indirectly
h =17 for the above state

Hill-climbing search: 8-queens problem

* Alocal minimum with h =1

9/21/12

Simulated Annealing Search

¢ Anneal from

http://www.merriam-webster.com/dictionary/
anneal

to heat and then cool (as steel or glass) usually for
softening and making less brittle; also : to cool
slowly usually in a furnace

Simulated Annealing Search

* ldea: escape local maxima by allowing some
"bad" moves but gradually decrease their
frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
neat, a node
T, a “temperature” controlling prob. of downward steps
current ¢~ MAKE-NODE(INITIAL-STATE[problem])
for t¢~ 1to oo do
T schedule]f]
if T'= 0 then return current
next < a randomly selected successor of current
AB+ VaLUE[nex] - VALUEcurrent]
if AE > 0 then current ¢ next
else current < neat only with probability ¢ /7

Properties of simulated annealing
search

¢ One can prove: If T decreases slowly enough, then
simulated annealing search will find a global
optimum with probability approaching 1

¢ Widely used in VLSI layout, airline scheduling, etc

— VLSI: very large scale integration for creating integrated
circuits

Local beam search

* Keep track of k states rather than just one

« Start with k randomly generated states

* At each iteration, all the successors of all k states are
generated

— If any one is a goal state, stop; else select the k best successors from
the complete list and repeat.

* Not the same as k searches in parallel
* Problem: all k states may end up on same local hill
— Choose the k successors randomly, biased toward good ones

Genetic algorithms

* Asuccessor state is generated by combining two parent states
« Start with k randomly generated states (population)

« Astate is represented as a string over a finite alphabet (often a string of Os
and 1s)

« Evaluation function (fitness function). Higher values for better states.

« Produce the next generation of states by selection, crossover, and
mutation

Genetic algorithms

[24748552] 24 31%__[32752410 [32748552 |—=] 3274¢[1b2 |
[32752411]728 29% [24748552 [24752411 =] 24752411
[24415124 %J 32752411 [32752124 |—{ 323b2124]

[32543213] 11 149%™~ 24415124 [24415811 }—{ 24415417
fa) (b} [T} (d) (e}
Tnitial Population ~ Fitness Function Selection Cioss—Ovet Mutation

Fitness function: number of non-attacking pairs of queens (min = 0, max =
8x7/2=28)

24/(24+23+20+11) = 31%

23/(24+23+20+11) = 29% etc

9/21/12

Genetic algorithms

