Search

Dr. Melanie Martin CS 4480 September 19, 2012

Outline

- Chapter 3
 - Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Chapter 4
 - Local search algorithms
 - Hill-climbing search
 - Simulated annealing search
 - Local beam search
- Genetic algorithms

Best-first search

- Idea: use an evaluation function f(n) for each node
 estimate of "desirability"
 - → Expand most desirable unexpanded node
- <u>Implementation</u>:

Order the nodes in frontier in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A* search

Heuristic

- · Problem solving by experimental methods
 - Trial and error
- Heuristic function h(n)
 - Takes node as input
 - Depends only on state of node
 - Estimated cost of cheapest path from node n to a goal node
 - Numerical estimate of the "goodness" of a state

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
 estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy best-first search

- Complete? No can get stuck in loops, e.g.,
 lasi → Neamt → lasi → Neamt →
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t$ so far to reach n
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{\mathit{SLD}}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A^* using TREE-SEARCH is optimal

example

Optimality of A* (proof) Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$
- $g(G_2) > g(G)$ f(G) = g(G) $f(G_2) > f(G)$
- since $h(G_2) = 0$
- since G2 is suboptimal
- $f(G_2) = g(G_2) > g(G) = f(G)$

Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- f(G₂) > f(G)
- since h is admissible h*(n) is true cost h(n) ≤ h*(n)
- $g(n) + h(n) \le g(n) + h^*(n)$ $f(n) \le f(G)$

Hence $f(G_2) > f(n)$, and A^* will never select G_2 for expansion

Optimality of A*

- A^* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Consistent heuristics

A heuristic is **consistent** if for every node n, every successor n' of n generated by any action a, the estimated cost of reaching the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n':

 $h(n) \leq c(n,a,n') + h(n')$

- If h is consistent, we have
 - f(n') = g(n') + h(n')
 - = g(n) + c(n,a,n') + h(n')
 - $\geq g(n) + h(n)$
 - = f(n)

- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with $f \le f(G)$)
- Time? Exponential
- · Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

 <u>h₁(S) = ?</u> • $h_2(S) = ?$

- h₁(n) = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Admissible heuristics

E.g., for the 8-puzzle:

- $h_{*}(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7

- $h_1(S) = ?8$
- $h_2(S) = ?3+1+2+2+3+3+2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h₂ is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes
- u=12 1DS = 5,044,035 indes A'(h₁) = 227 nodes A'(h₂) = 73 nodes d=24 IDS = too many nodes A'(h₁) = 39,135 nodes A'(h₂) = 1,641 nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

Beyond Classical Search

- Chapter 4
 - Hill Climbing
 - Simulated Annealing
 - Beam Search
 - Genetic Algorithms