Search

Dr. Melanie Martin
CS 4480
September 17, 2012

917/12

Search strategies

* Asearch strategy is defined by picking the order of node expansion
« Strategies are evaluated along the following dimensions:

— completeness: does it always find a solution if one exists?

— time complexity: number of nodes generated

— space complexity: maximum number of nodes in memory

— optimality: does it always find a least-cost solution?

« Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be o)

Uninformed search strategies

Uninformed search strategies use only the
information available in the problem definition

Breadth-first search
Uniform-cost search

Depth-first search
Depth-limited search
Iterative deepening search

Properties of breadth-first search
* Complete? Yes (if b is finite)
o Time? 1+b+b2+b3+... +b9 + b(b?-1) = O(b+1)
* Space? O(b%!) (keeps every node in memory)
* Optimal? Yes (if cost = 1 per step)

* Space is the bigger problem (more than time)

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
— frontier = priority queue ordered by path cost g(n)

Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost 2 €
Time? # of nodes with g < cost of optimal solution, O(b¢eina(c*/€)) where C*

is the cost of the optimal solution
Space? # of nodes with g < cost of optimal solution, O(beeiing(C*/€))

Optimal? Yes — nodes expanded in increasing order of g(n)

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:

— fringe = LIFO queue, i.e., put successors at front
»®

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Q
>(5) (©

917/12

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

917/12

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

()
9
»(D) (9

Depth-first search
¢ Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Depth-first search
* Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

¢ Complete? No: fails in infinite-depth spaces, spaces with
loops
— Modify to avoid repeated states along path

- complete in finite spaces

* Time? O(b™): terrible if m is much larger than d
— but if solutions are dense, may be much faster than breadth-first

* Space? O(bm), i.e., linear space!

¢ Optimal? No

917/12

Depth-limited search

= depth-first search with depth limit /,
i.e., nodes at depth / have no successors

M function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem)(STATE[node]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem
for depth+ 0 to co do
result < DEPTH-LIMITED- SEARCH(problem, depth)
if result # cutoff then return result

Iterative deepening search / =0

Limit=0 *Q [

Iterative deepening search / =1

Iterative deepening search [=2

Limit=2 *Q

o
A

Iterative deepening search [/ =3

Limit=3 »@

917/12

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d with
branching factor b:
Npys=b0+b? +b2+ ...+ b32 + ho1 4 pd
Number of nodes generated in an iterative deepening search to depth d
with branching factor b:
Nips = (d+1)b° + d bAL + (d-1)bA2 + .. + 3b%2 +2b%1 + 1b¢
Forb=10,d=5,
— Npg=1+10+100 + 1,000 + 10,000 + 100,000 = 111,111

— Nps =6+50+400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening
search

Complete? Yes
Time? (d+1)b° + d b + (d-1)b? + ... + b9 = O(b4)
Space? O(bd)

Optimal? Yes, if step cost =1

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First ~ Limited Deepening
Complete? Yes Yes No No Yes
Time opHY) oplcdy oy o) oY)
Space opHY) oIy o@m) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Repeated states

Failure to detect repeated states can turn a
linear problem into an exponential one!

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem]|(STATE[node]) then return SOLUTION(node)
if STATE[n0de] is not in closed then
add STATE[n0ode] to closed
fringe + INSERTALL(EXPAND(node, problem), fringe)

Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

