9/14/12

Search

Dr. Melanie Martin
CS 4480
September 14, 2012

Example: The 8-puzzle

HBaBn Ha
BN Na
)]

Start State Goal State

states?
actions?

goal test?
path cost?

Example: The 8-puzzle

HEaa 2]
BN DERE
e ez]

Start State Goal State

» states? locations of tiles

e actions? move blank left, right, up, down
e goal test? = goal state (given)

¢ path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

R/“‘H

u

R
states” . %parts of

the object to be assembled
actions?: continuous motions of robot joints

goal test?: complete assembly

path cost?: time to execute

Tree search algorithms

* Basic idea:
— offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a.~expanding
states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Tree search example

Tree search example

9/14/12

Tree search example

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem](STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors +— the empty set

for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
s<a new NODE
PARENT-NODE[s] ¢~ node; ACTION[s] <~ action; STATE[s] + result
PATH-COST[s] ¢~ PATH-COST[node] + STEP-COST(node, action, s)
DEeprH[s] ¢~ DEPTH[R0dE] + 1
add s to successors

return successors

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes state,
parent node, action, path cost g(x), depth

parent, action

Node depth =6

State s |
oools
Taie
The Expa u m \i’ ° ious fields and

using the SuccessorFn of the problem to create the corresponding
states.

g=6

Search strategies

* Asearch strategy is defined by picking the order of node expansion
« Strategies are evaluated along the following dimensions:

— completeness: does it always find a solution if one exists?

— time complexity: number of nodes generated

— space complexity: maximum number of nodes in memory

— optimality: does it always find a least-cost solution?

* Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be o)

Uninformed search strategies

Uninformed search strategies use only the
information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

Breadth-first search

* Expand shallowest unexpanded node

* Implementation:
— fringe is a FIFO queue, i.e., new successors go at

end D@

9/14/12

Breadth-first search

* Expand shallowest unexpanded node

* Implementation: fringe is a FIFO queue,

Breadth-first search

* Expand shallowest unexpanded node

* Implementation: fringe is a FIFO queue, i.e.,
new successors go at end

()
() >
© ©®

Breadth-first search

* Expand shallowest unexpanded node

* Implementation: fringe is a FIFO queue, i.e.,
new successors go at end

(4)
(&) ©
pbO ©® ©® ©

Properties of breadth-first search
* Complete? Yes (if b is finite)
o Time? 1+b+b2+b3+... +b? + b(b%-1) = O(b%1)
« Space? O(b?*1) (keeps every node in memory)

* Optimal? Yes (if cost = 1 per step)

* Space is the bigger problem (more than time)

