Search

Dr. Melanie Martin CS 4480 September 12, 2012

Some previous projects

- Twenty Questions
- · Library Search Assistant
- · Euclid's Game
- · FedEx on the Go
- · Battleship Game
- Line-Following Robot
- Connect Four
- "Reen"

Some previous projects

- Learning Checkers
- · Agent Fred
- Agent Using Genetic Algorithm
- Guess Who
- · Color Memory Game
- TicTac Chat
- Eight Queens
- Super Mario Bros. Al

Single-state problem formulation

A problem is defined by four items:

- 1. initial state e.g., "at Arad"
- 2. actions or successor function S(x) = set of action—state pairs e.g., S(Arad) = {<Arad → Zerind, Zerind>, ... }
- goal test, can be
 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)
- path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0
- A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

- Real world is absurdly complex
 - → state space must be abstracted for problem solving
- . (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
 - e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution =
 - set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem