Logic

Dr. Melanie Martin CS 4480 October 12, 2012

Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Entailment

• Entailment means that one thing follows from another:

 $\mathsf{KB} \hspace{0.2em}\rule{0.8em}{0.8em}\hspace{0.2em} \hspace{0.2em} \hspace{0.2em}$

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
 - E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of $\underline{\mathsf{models}},$ which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - E.g. KB = Giants won and Reds won α = Giants won

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices ⇒ 8 possible models

	_	
	'?'	
?	В В	

Wumpus models

Wumpus models

• *KB* = wumpus-world rules + observations

Wumpus models

- KB = wumpus-world rules + observations α_1 = "[1,2] is safe", $\mathit{KB} \models \alpha_1$, proved by model checking

Wumpus models

• KB = wumpus-world rules + observations

Wumpus models

- KB = wumpus-world rules + observations α_2 = "[2,2] is safe", $KB \models \alpha_2$

Inference

- $KB \vdash_i \alpha$ = sentence α can be derived from KB by procedure i
- Soundness: *i* is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \not\models \alpha$
- Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P_1 , P_2 etc are sentences
 - If S is a sentence, ¬S is a sentence (negation)
 - If S₁ and S₂ are sentences, S₁ ∧ S₂ is a sentence (conjunction)
 - If S₁ and S₂ are sentences, S₁ v S₂ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. P_{1,2} P_{2,2} P_{3,1} false true false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

 $\neg \, \mathsf{P}_{1,2} \wedge (\mathsf{P}_{2,2} \vee \mathsf{P}_{3,1}) = true \wedge (true \vee false) = \, true \wedge true = true$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true