Logic

Dr. Melanie Martin CS 4480

October 8, 2012

Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Outline

- · Knowledge-based agents
- · Wumpus world
- Logic in general models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Knowledge bases

domain-independent algorithms Knowledge base domain-specific content

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):

 Tell it what it needs to know
- Then it can ${\tt As\,k}$ itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- - Or at the implementation level

 i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

function KB-AGENT(percept) returns an action static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t)) $action \leftarrow Ask(KB, Make-Action-Query(t))$ Tell(KB, Make-Action-Sentence(action, t))

 $t \leftarrow t + 1$ return action

The agent must be able to:

Represent states, actions, etc.

Incorporate new percepts
Update internal representations of the world

Deduce hidden properties of the world

Deduce appropriate actions

Wumpus World PEAS description

- - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square - Releasing drops the gold in same square
- SE SESS \$5,555 §
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

- Fully Observable No only local perception
- <u>Deterministic</u> Yes outcomes exactly specified
- Episodic No sequential at the level of actions
- Static Yes Wumpus and Pits do not move
- <u>Discrete</u> Yes
- Single-agent? Yes Wumpus is essentially a natural feature

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Semantics define the "meaning" of sentences;
 i.e., define truth of a sentence in a world
- ♦ E.g., the language of arithmetic
 - $x+2 \ge y$ is a sentence; $x2+y > \{\}$ is not a sentence
 - $x+2 \ge y$ is true iff the number x+2 is no less than the number y

 - x+2 ≥ y is true in a world where x = 7, y = 1
 x+2 ≥ y is false in a world where x = 0, y = 6

Entailment

• Entailment means that one thing follows from another:

- Knowledge base \textit{KB} entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
- E.g., x+y = 4 entails 4 = x+y
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - E.g. KB = Giants won and Reds won α = Giants won

