Bayesian networks

Chapter 14 Section 1 - 2

Outline

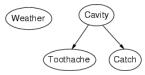
- Syntax
- · Semantics

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - $\begin{array}{ll} \text{ a directed, acyclic graph (link \approx "directly influences")} \\ \text{ a conditional distribution for each node given its parents:} \\ \mathbf{P}\left(X_i | \, \mathsf{Parents}\left(X_i\right)\right) \end{array}$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

Topology of network encodes conditional independence assertions:



- · Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

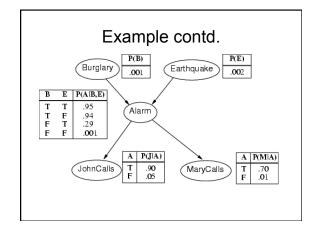
Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:

 A burglar can set the alarm off

 An earthquake can set the alarm off

 - The alarm can cause Mary to call
 The alarm can cause John to call



Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for X_i = true (the number for X_i = false is just 1-p)
- If each variable has no more than k parents, the complete network requires
 O(n ⋅ 2½) numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, \ldots, X_n) = \pi_{i=1} P(X_i | Parents(X_i))$$

e.g., **P**(j \wedge m \wedge a \wedge \neg b \wedge \neg e)

= $P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For *i* = 1 to *n*
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots X_{i-1})$

This choice of parents guarantees:

$$\begin{array}{l} \boldsymbol{P}\left(X_{1},\ \ldots,X_{n}\right) &= \pi_{i=1}\,\boldsymbol{P}\left(X_{i}\mid X_{1},\ \ldots,\ X_{i-1}\right)\\ \text{(chain rule)} &= \pi_{i=1}\boldsymbol{P}\left(X_{i}\mid Parents(X_{i})\right)\\ \text{(by construction)} \end{array}$$

Example

• Suppose we choose the ordering M, J, A, B, E

 $P(J \mid M) = P(J)$?

Example

• Suppose we choose the ordering M, J, A, B, E

 $P(J \mid M) = P(J)$? No $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$?

Example

• Suppose we choose the ordering M, J, A, B, E

 $P(J \mid M) = P(J)$?

No

 $P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)?$ No $P(B \mid A, J, M) = P(B \mid A)?$

 $P(B \mid A, J, M) = P(B)$?

Example

• Suppose we choose the ordering M, J, A, B, E

 $P(J \mid M) = P(J)$?

No

 $\boldsymbol{P}(A\mid J,\,M)=\boldsymbol{P}(A\mid J)?\;\boldsymbol{P}(A\mid J,\,M)$

 $P(B \mid A, J, M) = P(B \mid A)$? Yes

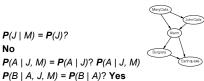
 $P(B \mid A, J, M) = P(B)$? No

 $P(E \mid B, A, J, M) = P(E \mid A)$?

 $P(E \mid B, A, J, M) = P(E \mid A, B)$?

Example

• Suppose we choose the ordering M, J, A, B, E



 $P(B \mid A, J, M) = P(B)$? No $P(E \mid B, A, J, M) = P(E \mid A)$? No

 $P(E \mid B, A, J, M) = P(E \mid A, B)$? Yes

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct