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Making decisions under
uncertainty

Suppose | believe the following:
P(A,; gets me thereontimel...) =0.04
P(Aq, gets me thereontime | ...) =0.70
P(A,,gets me thereontimel...) =0.95 |
P(A,,,, gets me there on time | ...) =0.9999 i
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 Which action to choose?

Depends on my for missing flight vs.
time spent waiting, etc. #

is used to represent and infer preferences
= probability theory + utility theory o
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Syntax

; j f
« Basic element: random variable *

et A I e

- Similar to propositional logic: possible worlds defined by assignment of values to
random variables.

random variables
e.g., Cavity (do | have a cavity?)
random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>
«  Domain values must be exhaustive and mutually exclusive
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- Elementary proposition constructed by assi%nment of a value to a random
variable: e.g., Weather = sunny, Cavity = false (abbreviated as - cavity) {

- Complex propositions formed from elementary rpropositions and standard logical
connectives e.g., Weather = sunny v Cavity = false
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Syntax

- Atomic event: A specification of the state of
the world about which the agent is uncertain
E.g., if the world consists of only two Boolean variables Cavity
and Toothache, then there are 4 distinct atomic events:
Cavity = false A Toothache = false
Cavity = false n Toothache = true
Cavity = true n Toothache = false
Cavity = true A Toothache = true

e e
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- Atomic events are mutually exclusive and exhaustive
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Axioms of probability

» For any propositions A, B
—-0=P(A) =1
— P(true) =1 and P(false) =0
—P(Av B) =P(A) + P(B) - P(A A B)

True

A A+ B B
é ™
L
[
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Prior probability

or of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to
arrival of any (new) evidence

gives values for all possible assignments:
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

. for a set of random variables gives the probability of
every atomic event on those random variables

P(Weather,Cavity) = a 4 x 2 matrix of values:
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Weather = sunny rainy cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08
- Every question about a domain can be answered by the joint distribution *
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Conditional probability

or
e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all | know

« (Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors) :

- If we know more, e.g., cavity is also given, then we have :
P(cavity | toothache,cavity) = 1

- New evidence may be irrelevant, allowing simplification, e.g., ]
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

- This kind of inference, sanctioned by domain knowledge, is
crucial ¥
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Conditional probability

Definition of conditional probability:
P(alb)=P(a A b)/P(b) if P(b)>0

gives an alternative formulation:
P(a A b) =P(alb) P(b) =P(b | a) P(a)

A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)
(View as a set of 4 x 2 equations, not matrix mult.)

is derived by successive application of product rule:
P(X;, ...X)  =PXq,Xo ) POX T XX )
= P(Xq,eesX0) POX 4 I XX 0) POX T X, X )

= r[i=1An P(XI | X1, -G ’XI-1)

O~
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Inference by enumeration

- Start with the joint probability distribution:

toothache I - toothache

e

carch| — catch)carch| — carch

cavity | .

— cavity | 016 .064 1.144 576

For any proposition ¢, sum the atomic events where
itis true: P(¢) =2, 1, P(w)
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Inference by enumeration

- Start with the joint probability distribution:

toothache I - toothache

cavity | .108| .012

072

| catch| — catch I catch| — carch

.008

— cavity | 016 .064

144

376

For any proposition ¢, sum the atomic events where

itis true: P(¢) =2, 1, P(w)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

e e A N
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Inference by enumeration

- Start with the joint probability distribution:

toothache - roothache

Icarch = catchlcatch| — carch

caviry | .108| .012 | .072] .008
—caviry | .016] 064 | .144 | 576

- For any proposition ¢, sum the atomic events where
itis true: P(¢) =2 Lo P(w)

SR
- P(toothache v cavity) =0.108 + 0.012 + 0.016 +
0.064 + 0.072 + 0.008= 0.28
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Inference by enumeration

Start with the joint probability distribution:

. S

toothache I - toothache

cavity | .108| .012

Can also compute conditional probabilities:
P(-cavity | toothache) = P(-cavity A toothache)

carch| — catch) carch

- carch

.008

~ caviny || 016 | 064 || 144

376 4'

P(toothache)

0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

=0.4
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Normalization

toothache =1 toothache
carch | — catch|catch| — cartch
caviry |1.108] .012 072 | .008
= cavity |1.016] .064 144 | 576

«  Denominator can be viewed as a normalization constant a

P(Cavity | toothache) = a, P(Cauvity,toothache)
= q, [P(Cavity,toothache,catch) + P(Cavity,toothache,- catch)]

= q, [<0.108,0.016> + <0.012,0.064>]

=q, <0.12,0.08> =<0.6,0.4>

and summing over

General idea: compute distribution on query variable by fixing /‘V‘
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Inference by enumeration,
contd.

Typically, we are interested in
the posterior joint distribution of the Y
given specific values e for the E

Let the beH=X-Y-E 3

Then the required summation of joint entries is done by summing out the hidden
variables:

P(YI E=e)=aP(Y,E=e)=a5 P(Y,E=e, H=h)

— —— —

- The terms in the summation are joint entries because Y, E and H together
exhaust the set of random variables

«  Obvious problems: ?
1. Worst-case time complexity O(d") where d is the largest arity
2. Space complexity O(d") to store the joint distribution _
3. How to find the numbers for O(d") entries? ]
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Inference by enumeration,
contd.

- ENUMERATE-JOINT-ASK algorithm (p. 477)

— Answering probabilistic queries for discrete
variables

— Complete

— For n Boolean variables table size is O(2")
- Time to process also O(2")

— Not practical for anything realistic




Independence

« Aand B are independent iff
P(AIB) =P(A) orP(BIA)=P(B) orP(A, B)=P(A) P(B)

- e — e e Al

7 Cavity .
decomposes into ‘-.,Toothache Catch ,

e o o |

{ Weathéf ‘;

Cavity
Toothache Catch
Weather

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

32 entries reduced to 12; for n independent biased coins, O(2") —O(n)

- Absolute independence powerful but rare

- Dentistry is a large field with hundreds of variables, none of which are
independent. What to do?
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Conditional independence

- P(Toothache, Cavity, Catch) has 23 — 1 = 7 independent entries

« If I have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity) ;

« The same independence holds if | haven't got a cavity:
(2) P(catch | toothache,- cavity) = P(catch | —cavity)

— —— —

- Catch is conditionally independent of Toothache given Cavity:.
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

« Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) ?
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)




Conditional independence

contd.

- Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

l.e., 2 + 2 + 1 = 5 independent numbers

« In most cases, the use of conditional independence reduces the
size of the representation of the joint distribution from

exponential in nto linear in n.

- Conditional independence is our most basic and robust form of {

knowledge about uncertain environments.

*”——pow— e e e e S P — P

pr—

. e S e

7t

-

g e 4



Bayes' Rule

Product rule P(aab) =P(al b) P(b) =P(b | a) P(a)
P(alb)=P(bla)P(a)/P(b)

or in distribution form
P(YIX) = P(XIY) P(Y) / P(X) = aP(XIY) P(Y)

Useful for assessing probability from
probability:

— P(CauselEffect) = P(EffectiCause) P(Cause) / P(Effect)

— E.g., let M be meningitis, S be stiff neck:
P(mls) = P(slm) P(m) / P(s) = 0.8 x 0.0001 / 0.1 = 0.0008
— Note: posterior probability of meningitis still very small!
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Bayes' Rule and conditional
independence

P(Cauvity | toothache A catch)
= aP(toothache a catch | Cavity) P(Cavity)
= aP(toothache | Cavity) P(catch | Cavity) P(Cavity)

e

This is an example of a naive Bayes model:
P(Cause,Effect,, ... ,Effect,) = P(Cause) niP(Effect|Cause)

@ (=) Gﬁﬁaaﬂb |

Total number of parameters is linear in n
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Summary

 Probability is a rigorous formalism for uncertain

e I

knowledge
specifies probability of
every |
* Queries can be answered by summing over atomic E
events 1
- For nontrivial domains, we must find a way to reduce
the joint size
and provide ?
the tools
]
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