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Making decisions under
uncertainty

Suppose I believe the following:
P(A25 gets me there on time | …) = 0.04
P(A90 gets me there on time | …) = 0.70
P(A120 gets me there on time | …) = 0.95
P(A1440 gets me there on time | …) = 0.9999

• Which action to choose?
Depends on my preferences for missing flight vs.
time spent waiting, etc.
– Utility theory is used to represent and infer preferences
– Decision theory = probability theory + utility theory



Syntax
• Basic element: random variable

– Refers to a part of the world whose status is initially unknown
– Assigns a numerical value to each outcome of an experiment

• Similar to propositional logic: possible worlds defined by assignment of values to
random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?)

• Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

• Domain values must be exhaustive and mutually exclusive

• Elementary proposition constructed by assignment of a value to a! random
variable: e.g., Weather = sunny, Cavity = false! (abbreviated as ¬cavity)

• Complex propositions formed from elementary propositions and standard logical
connectives e.g., Weather = sunny ∨ Cavity = false

• Also continuous: time, distance, weight



Syntax
• Atomic event: A complete specification of the state of

the world about which the agent is uncertain
E.g., if the world consists of only two Boolean variables Cavity

and Toothache, then there are 4 distinct atomic events:
Cavity = false ∧Toothache = false
Cavity = false ∧ Toothache = true
Cavity = true ∧ Toothache = false
Cavity = true ∧ Toothache = true

• Atomic events are mutually exclusive and exhaustive
• AKA: Sample space is the set of elementary

outcomes



Axioms of probability
• For any propositions A, B!(Events)

– 0 ≤ P(A) ≤ 1
– P(true) = 1 and P(false) = 0
– P(A ∨ B) = P(A) + P(B) - P(A ∧ B)



Prior probability
• Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to
arrival of any (new) evidence

• Probability distribution gives values for all possible assignments:
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

• Joint probability distribution for a set of random variables gives the probability of
every atomic event on those random variables

P(Weather,Cavity) = a 4 × 2 matrix of values:

Weather = sunny rainy cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08

• Every question about a domain can be answered by the joint distribution
• Note these are intersections



Conditional probability
• Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all I know

• (Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

• If we know more, e.g., cavity is also given, then we have
P(cavity | toothache,cavity) = 1

• New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is
crucial



Conditional probability
• Definition of conditional probability:

P(a | b) = P(a ∧ b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation:
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)

• A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

• (View as a set of 4 × 2 equations, not matrix mult.)

• Chain rule is derived by successive application of product rule:
P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)
                 = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)
                  = …
                  = πi= 1^n P(Xi | X1, … ,Xi-1)



Inference by enumeration
• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where
it is true: P(φ) = Σω:ω╞φ P(ω)



Inference by enumeration
• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where
it is true: P(φ) = Σω:ω╞φ P(ω)

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2



Inference by enumeration
• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where
it is true: P(φ) = Σω:ω╞φ P(ω)

• P(toothache v cavity) = 0.108 + 0.012 + 0.016 +
0.064 + 0.072 + 0.008= 0.28



Inference by enumeration
• Start with the joint probability distribution:

• Can also compute conditional probabilities:
P(¬cavity | toothache) = P(¬cavity ∧ toothache)

P(toothache)
=       0.016+0.064
   0.108 + 0.012 + 0.016 + 0.064
= 0.4



Normalization

• Denominator can be viewed as a normalization constant α

P(Cavity | toothache) = α, P(Cavity,toothache)
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache,¬ catch)]
= α, [<0.108,0.016> + <0.012,0.064>]
= α, <0.12,0.08> = <0.6,0.4>
α = 0.2

General idea: compute distribution on query variable by fixing evidence
variables and summing over hidden variables



Inference by enumeration,
contd.

Typically, we are interested in
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden
variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

• The terms in the summation are joint entries because Y, E and H together
exhaust the set of random variables

• Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity
2. Space complexity O(dn) to store the joint distribution
3. How to find the numbers for O(dn) entries?



Inference by enumeration,
contd.

• ENUMERATE-JOINT-ASK algorithm (p. 477)
– Answering probabilistic queries for discrete

variables
– Complete
– For n Boolean variables table size is O(2n)

• Time to process also O(2n)
– Not practical for anything realistic



Independence
• A and B are independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

• 32 entries reduced to 12; for n independent biased coins, O(2n) →O(n)

• Absolute independence powerful but rare

• Dentistry is a large field with hundreds of variables, none of which are
independent. What to do?



Conditional independence
• P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries

• If I have a cavity, the probability that the probe catches in it doesn't
depend on whether I have a toothache:
(1) P(catch | toothache, cavity) = P(catch | cavity)

• The same independence holds if I haven't got a cavity:
(2) P(catch | toothache,¬cavity) = P(catch | ¬cavity)

• Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

• Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)



Conditional independence
contd.

• Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers

• In most cases, the use of conditional independence reduces the
size of the representation of the joint distribution from
exponential in n to linear in n.

• Conditional independence is our most basic and robust form of
knowledge about uncertain environments.



Bayes' Rule
• Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)

⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

• or in distribution form
P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)

• Useful for assessing diagnostic probability from causal
probability:
– P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

– E.g., let M be meningitis, S be stiff neck:
P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008

– Note: posterior probability of meningitis still very small!



Bayes' Rule and conditional
independence

P(Cavity | toothache ∧ catch)
= αP(toothache ∧ catch | Cavity) P(Cavity)
= αP(toothache | Cavity) P(catch | Cavity) P(Cavity)

• This is an example of a naïve Bayes model:
P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause)

• Total number of parameters is linear in n



Summary
• Probability is a rigorous formalism for uncertain

knowledge
• Joint probability distribution specifies probability of

every atomic event
• Queries can be answered by summing over atomic

events
• For nontrivial domains, we must find a way to reduce

the joint size
• Independence and conditional independence provide

the tools


