Uncertainty

Dr. Melanie Martin
CS 4480
November 15, 2010

Based on slides from

http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Making decisions under uncertainty

Suppose I believe the following:
$P\left(A_{25}\right.$ gets me there on time $\left.1 \ldots\right)=0.04$
$P\left(A_{90}\right.$ gets me there on time $\left.1 \ldots\right)=0.70$
$P\left(A_{120}\right.$ gets me there on time I ... $)=0.95$
$\mathrm{P}\left(\mathrm{A}_{1440}\right.$ gets me there on time I $\left.\ldots\right)=0.9999$

- Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Refers to a part of the world whose status is initially unknown
- Assigns a numerical value to each outcome of an experiment
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
e.g., Cavity (do I have a cavity?)

Discrete random variables
e.g., Weather is one of <sunny, rainy, cloudy, snow>

- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity $=$ false (abbreviated as \neg cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny \vee Cavity $=$ false

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

Cavity $=$ false \wedge Toothache $=$ false Cavity $=$ false \wedge Toothache $=$ true Cavity $=$ true \wedge Toothache $=$ false Cavity $=$ true \wedge Toothache $=$ true

- Atomic events are mutually exclusive and exhaustive
- AKA: Sample space is the set of elementary outcomes

Axioms of probability

- For any propositions A, B (Events)
$-0 \leq P(A) \leq 1$
$-\mathrm{P}($ true $)=1$ and $\mathrm{P}($ false $)=0$
$-\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$
True

Prior probability

- Prior or unconditional probabilities of propositions
e.g., $\mathrm{P}($ Cavity $=$ true $)=0.1$ and $\mathrm{P}($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
$\mathbf{P}($ Weather $)=<0.72,0.1,0.08,0.1>$ (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
$\mathbf{P}($ Weather, Cavity $)=\mathrm{a} 4 \times 2$ matrix of values:

Weather $=$	sunny	rainy	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution Note these are intersections

Conditional probability

- Conditional or posterior probabilities
e.g., P(cavity I toothache) $=0.8$
i.e., given that toothache is all I know
- (Notation for conditional distributions:
$\mathbf{P}($ Cavity \mid Toothache $)=$ 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have $\mathrm{P}($ cavity I toothache, cavity $)=1$
- New evidence may be irrelevant, allowing simplification, e.g., $\mathrm{P}($ cavity \mid toothache, sunny $)=\mathrm{P}($ cavity \mid toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability:

$$
P(a \mid b)=P(a \wedge b) / P(b) \text { if } P(b)>0
$$

- Product rule gives an alternative formulation:
$P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$
- A general version holds for whole distributions, e.g.,
$\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather / Cavity) $\mathbf{P}($ Cavity $)$
- (View as a set of 4×2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\ldots \\
& =\Pi_{i=1} \wedge n \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true: $P(\phi)=\Sigma_{\omega: \omega \equiv \phi} P(\omega)$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true: $P(\phi)=\Sigma_{\omega: \omega \equiv \phi} P(\omega)$
- $\mathrm{P}($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition ϕ, sum the atomic events where it is true: $P(\phi)=\Sigma_{\omega: \omega \equiv \phi} P(\omega)$
- $\mathrm{P}($ toothache v cavity $)=0.108+0.012+0.016+$ $0.064+0.072+0.008=0.28$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Can also compute conditional probabilities:

$$
\begin{aligned}
\mathrm{P}(\neg \text { cavity } \mid \text { toothache }) \quad & =\frac{\mathrm{P}(\neg \text { cavity } \wedge \text { toothache })}{\mathrm{P}(\text { toothache })} \\
& =0.0 .016+0.064 \\
& 0.108+0.012+0.016+0.064 \\
& =0.4
\end{aligned}
$$

Normalization

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Denominator can be viewed as a normalization constant a
$\mathbf{P}($ Cavity I toothache $)=\mathbf{a}, \mathbf{P}($ Cavity, toothache $)$
$=\mathrm{a},[\mathbf{P}($ Cavity,toothache,catch $)+\mathbf{P}($ Cavity,toothache, \neg catch $)]$
$=a,[<0.108,0.016\rangle+\langle 0.012,0.064\rangle]$
$=a,<0.12,0.08\rangle=<0.6,0.4\rangle$
$a=0.2$
General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables \mathbf{Y}
given specific values \mathbf{e} for the evidence variables \mathbf{E}
Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$
Then the required summation of joint entries is done by summing out the hidden variables:
$\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\mathrm{aP}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\mathbf{a} \Sigma_{\mathrm{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})$

- The terms in the summation are joint entries because \mathbf{Y}, \mathbf{E} and \mathbf{H} together exhaust the set of random variables
- Obvious problems:

1. Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2. Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3. How to find the numbers for $O\left(d^{n}\right)$ entries?

Inference by enumeration, contd.

- ENUMERATE-JOINT-ASK algorithm (p. 477)
- Answering probabilistic queries for discrete variables
- Complete
- For n Boolean variables table size is $O\left(2^{n}\right)$
- Time to process also $O\left(2^{n}\right)$
- Not practical for anything realistic

Independence

- $\quad A$ and B are independent iff

$$
\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad \text { or } \mathbf{P}(B \mid A)=\mathbf{P}(B) \quad \text { or } \mathbf{P}(\mathrm{A}, \mathrm{~B})=\mathbf{P}(A) \mathbf{P}(B)
$$

P(Toothache, Catch, Cavity, Weather)
$=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$

- 32 entries reduced to 12 ; for n independent biased coins, $O\left(2^{n}\right) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- $\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $\mathbf{P}($ catch I toothache, cavity $)=\mathbf{P}($ catch I cavity $)$
- The same independence holds if I haven't got a cavity:
(2) $\mathbf{P}($ catch \mid toothache,\neg cavity $)=\mathbf{P}($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch I Toothache, Cavity $)=\mathbf{P}($ Catch $/$ Cavity $)$
- Equivalent statements:
$\mathbf{P}($ Toothache I Catch, Cavity $)=\mathbf{P}($ Toothache I Cavity $)$
$\mathbf{P}($ Toothache, Catch I Cavity $)=\mathbf{P}($ Toothache I Cavity) $\mathbf{P}($ Catch I Cavity $)$

Conditional independence contd.

- Write out full joint distribution using chain rule:
\mathbf{P} (Toothache, Catch, Cavity)
= P(Toothache I Catch, Cavity) P(Catch, Cavity)
$=\mathbf{P}($ Toothache I Catch, Cavity) $\mathbf{P}($ Catch I Cavity) \mathbf{P} (Cavity)
$=\mathbf{P}($ Toothache I Cavity) \mathbf{P} (Catch I Cavity) \mathbf{P} (Cavity)
l.e., $2+2+1=5$ independent numbers
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$ \Rightarrow Bayes' rule: $\mathrm{P}(\mathrm{a} \mid \mathrm{b})=\mathrm{P}(\mathrm{b} \mid \mathrm{a}) \mathrm{P}(\mathrm{a}) / \mathrm{P}(\mathrm{b})$
- or in distribution form

$$
P(Y \mid X)=P(X I Y) P(Y) / P(X)=a P(X I Y) P(Y)
$$

- Useful for assessing diagnostic probability from causal probability:
- P (CauselEffect) $=P$ (EffectlCause) $P($ Cause $) / P($ Effect $)$
- E.g., let M be meningitis, S be stiff neck:

$$
P(\mathrm{mls})=P(\mathrm{~s} \mid \mathrm{m}) P(\mathrm{~m}) / P(\mathrm{~s})=0.8 \times 0.0001 / 0.1=0.0008
$$

- Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

P(Cavity I toothache ^ catch)

$$
\begin{aligned}
& =a \mathbf{P}(\text { toothache } \wedge \text { catch I Cavity) } \mathbf{P}(\text { Cavity }) \\
& =a \mathbf{P}(\text { toothache / Cavity } \mathbf{P}(\text { catch I Cavity) } \mathbf{P}(\text { Cavity })
\end{aligned}
$$

- This is an example of a naïve Bayes model:
$\mathbf{P}\left(\right.$ Cause, Effect $_{1}, \ldots$, Effect $\left._{n}\right)=\mathbf{P}$ (Cause) $\pi_{9} \mathbf{P}\left(\right.$ Effect $_{i}$ Cause $)$

- Total number of parameters is linear in n

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

