## Uncertainty

## Dr. Melanie Martin

CS 4480
November 12, 2010

Based on slides from

http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

## Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule


## Uncertainty

Let action $A_{t}=$ leave for airport ${ }_{\mathrm{t}}$ minutes before flight Will $A_{t}$ get me there on time?

Problems:

1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

1. risks falsehood: " $A_{25}$ will get me there on time", or
2. leads to conclusions that are too weak for decision making:
" $A_{25}$ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
( $A_{1440}$ might reasonably be said to get me there on time but l'd have to stay overnight in the airport ...)

## Methods for handling uncertainty

- Default or nonmonotonic logic:
- Assume my car does not have a flat tire
- Assume $A_{25}$ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
- $A_{25} l_{0.3}$ get there on time
- Sprinkler $\rightarrow{ }_{0.99}$ WetGrass
- WetGrass $\rightarrow_{0.7}$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
- Model agent's degree of belief
- Given the available evidence,
- $A_{25}$ will get me there on time with probability 0.04


## Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

- Probabilities relate propositions to agent's own state of knowledge
e.g., $\mathrm{P}\left(\mathrm{A}_{25}\right.$ I no reported accidents $)=0.06$

These are not assertions about the world
Probabilities of propositions change with new evidence:
e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mathrm{I}\right.$ no reported accidents, 5 a.m. $)=0.15$

## Making decisions under uncertainty

Suppose I believe the following:
$P\left(A_{25}\right.$ gets me there on time $\left.1 \ldots\right)=0.04$
$P\left(A_{90}\right.$ gets me there on time $\left.1 \ldots\right)=0.70$
$P\left(A_{120}\right.$ gets me there on time l $\left.\ldots\right)=0.95$
$\mathrm{P}\left(\mathrm{A}_{1440}\right.$ gets me there on time I $\left.\ldots\right)=0.9999$

- Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory


## Syntax

- Basic element: random variable
- Refers to a part of the world whose status is initially unknown
- Assigns a numerical value to each outcome of an experiment
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
e.g., Cavity (do I have a cavity?)

Discrete random variables
e.g., Weather is one of <sunny, rainy, cloudy, snow>

- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity $=$ false (abbreviated as $\neg$ cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather $=$ sunny $\vee$ Cavity $=$ false


## Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

Cavity $=$ false $\wedge$ Toothache $=$ false Cavity $=$ false $\wedge$ Toothache $=$ true Cavity $=$ true $\wedge$ Toothache $=$ false Cavity $=$ true $\wedge$ Toothache $=$ true

- Atomic events are mutually exclusive and exhaustive
- AKA: Sample space is the set of elementary outcomes


## Axioms of probability

- For any propositions $A, B$ (Events)
$-0 \leq P(A) \leq 1$
$-\mathrm{P}($ true $)=1$ and $\mathrm{P}($ false $)=0$
$-\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$
True



## Prior probability

- Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.1$ and $P($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:

```
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
```

- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables $\mathbf{P}($ Weather, Cavity $)=\mathrm{a} 4 \times 2$ matrix of values:

| Weather $=$ | sunny | rainy | cloudy | snow |
| :--- | :--- | :--- | :--- | :--- |
| Cavity $=$ true | 0.144 | 0.02 | 0.016 | 0.02 |
| Cavity $=$ false | 0.576 | 0.08 | 0.064 | 0.08 |

- Every question about a domain can be answered by the joint distribution Note these are intersections


## Conditional probability

- Conditional or posterior probabilities
e.g., $\mathrm{P}($ cavity l toothache $)=0.8$
i.e., given that toothache is all I know
- (Notation for conditional distributions:
$\mathbf{P}($ Cavity $\mid$ Toothache $)=$ 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have $\mathrm{P}($ cavity I toothache, cavity $)=1$
- New evidence may be irrelevant, allowing simplification, e.g., $\mathrm{P}($ cavity l toothache, sunny) $=\mathrm{P}($ cavity $\mid$ toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

