Uncertainty

Dr. Melanie Martin CS 4480 November 12, 2010 Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:

"A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

Default or nonmonotonic logic:

- Assume my car does not have a flat tire
- Assume A₂₅ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

- $A_{25} \rightarrow A_{0.3}$ get there on time
- Sprinkler $I \rightarrow _{0.99}$ WetGrass
- WetGrass $I \rightarrow _{0.7}$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability

- Model agent's degree of belief
- Given the available evidence,
- $-A_{25}$ will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

 Probabilities relate propositions to agent's own state of knowledge

e.g., $P(A_{25} | no reported accidents) = 0.06$

These are not assertions about the world

Probabilities of propositions change with new evidence: e.g., $P(A_{25} | no reported accidents, 5 a.m.) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

 $\begin{array}{ll} \mathsf{P}(\mathsf{A}_{25} \text{ gets me there on time I} \dots) &= 0.04 \\ \mathsf{P}(\mathsf{A}_{90} \text{ gets me there on time I} \dots) &= 0.70 \\ \mathsf{P}(\mathsf{A}_{120} \text{ gets me there on time I} \dots) &= 0.95 \\ \mathsf{P}(\mathsf{A}_{1440} \text{ gets me there on time I} \dots) &= 0.9999 \end{array}$

Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

Utility theory is used to represent and infer preferences

Decision theory = probability theory + utility theory

Syntax

Basic element: random variable

- Refers to a part of the world whose status is initially unknown
- Assigns a numerical value to each outcome of an experiment
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
 e.g., *Cavity* (do I have a cavity?)
- Discrete random variables
 e.g., Weather is one of <sunny,rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., *Weather = sunny*, *Cavity = false* (abbreviated as \neg *cavity*)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., *Weather = sunny* v *Cavity = false*
- Also continuous: time, distance, weight

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
 E.g., if the world consists of only two Boolean variables. *Cavity*
 - E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events: *Cavity* = false \land *Toothache* = false *Cavity* = false \land *Toothache* = true

 $Cavity = true \land Toothache = true$ $Cavity = true \land Toothache = true$ $Cavity = true \land Toothache = true$

- Atomic events are mutually exclusive and exhaustive
- AKA: Sample space is the set of elementary outcomes

Axioms of probability

• For any propositions A, B (Events) $-0 \le P(A) \le 1$ -P(true) = 1 and P(false) = 0 $-P(A \lor B) = P(A) + P(B) - P(A \land B)$

True

Prior probability

- Prior or unconditional probabilities of propositions e.g., P(*Cavity* = true) = 0.1 and P(*Weather* = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
 P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
 P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather =	sunny	rainy	cloudy	snow
<i>Cavity</i> = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution
- Note these are intersections

Conditional probability

- Conditional or posterior probabilities
 e.g., P(*cavity* | *toothache*) = 0.8
 i.e., given that *toothache* is all I know
- (Notation for conditional distributions: P(Cavity | Toothache) = 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have P(cavity | toothache,cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g., P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial