Search

Dr. Melanie Martin
CS 4480
September 24, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Chapter 5 Outline

 Constraint Satisfaction Problems (CSP)
 Backtracking search for CSPs
 Local search for CSPs

. o> e p— ——— - T TR e S e, ™ MP‘M—WJ-’ J

Constraint satisfaction problems
(CSPs)

- Standard search problem:

is a "black box* — any data structure that supports successor
function, heuristic function, and goal test

o GSP:

e e A N

is defined by variables X; with values from domain D,

is a set of constraints specifying allowable combinations of
values for subsets of variables

I —— —— e o - -

- Simple example of a formal representation language

« Allows useful general-purpose algorithms with more power than *

standard search algorithms |

.’d————oc——-’— e e P et —°~MA~-‘—~'Q*~AWJWJ

Example: Map-Coloring

e e A N

Northern]
Territory
Western Queensland i
Australia J
South — {
Australia 4
[New South Wales

Tasmania

WA, NT, Q, NSW, V, SA, T *
D, = {red,green,blue}
: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 1
(green,blue),(blue,red),(blue,green)} /+*

.’d————oc——-’— e e P et —°~MA~-‘—~'Q*~AWJWJ

Example: Map-Coloring g

=
)}

Tasm'ia

are complete and consistent assignments, "
e.g., {WA =red, NT = green,Q =red,NSW = green,V

: = red,SA = blue, T = green} , |
< : 5 T i :t

les

Constraint graph

- Binary CSP: each constraint relates two variables

- Constraint graph: nodes are variables, arcs are
constraints

e I—— AN AN I

—_ p—

Varieties of CSPs

Discrete variables
— finite domains:

- nvariables, domain size d 2 O(d") complete assignments

* e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
— infinite domains:

* integers, strings, etc.

* e.g., job scheduling, variables are start/end days for each job

 need a constraint language, e.g., StartJob, + 5 < StartJob,

Continuous variables

— e.g., start/end times for Hubble Space Telescope observations

— linear constraints solvable in polynomial time by linear
programming

-

P T m————

Varieties of constraints

constraints involve a single variable,
— e.g., SA # green

constraints involve pairs of variables,
— e.g., SA # WA

constraints involve 3 or more
variables,

— e.g., cryptarithmetic column constraints

-

PR -

Example: Cryptarithmetic

D10 O

W
W
U

ol -

+
F

% &

FTUWROX, X, X,
:{0,1,2,3,4,5,6,7,8,9}
. Alldiff (F, T,U,W,R,0)
- O0+0=R+10" X,
— X, +W+W=U+10- X,
— X+ T+T=0+10"X;

— X,=F, T#0,F#0
g —— ESEEE— haSE———

— A MM’W

Real-world CSPs

- Assignment problems
— e.g., who teaches what class
+ Timetabling problems
— e.g., which class is offered when and where?
 Transportation scheduling
- Factory scheduling

* Notice that many real-world problems involve real-
valued variables

e I

O~

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it
States are defined by the values assigned so far

: the empty assignment { }

: assign a value to an unassigned variable that does
not conflict with current assignment

- fail if no legal assignments
: the current assignment is complete

P T m————

This is the same for all CSPs

Every solution appears at depth n with n variables é
—> use depth-first search

Path is irrelevant, so can also use complete-state formulation |
b =(n-()d atdepth £, hence n! - d" leaves i

e AN S

Backtracking search

« Variable assignments are , l.e.,
[WA =red then NT = green] same as [NT = green then WA =red]

« Only need to consider assignments to a single variable at each node
= b =d and there are d" leaves

« Depth-first search fr(])r CSPs with single-variable assignments is called
searc

- Backtracking search is the basic uninformed algorithm for CSPs

« Can solve n-queens for n= 25

-

— —— — a >

Backtracking search

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure

if assignment is complete then return assignment
var < SELECT- UNASSIGNED- VARIABLE(Variables/csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = value } to assignment
result «+— RECURSIVE- BACK TRACKING(assignment, csp)
if result # failue then return result

remove { var = value } from assignment
return failure

B ——

Backtracking example
S

A ———

e —m——

Backtracking example ’
S

A)

¢ ¢ ¢

:
f

Backtracking example

=

—]

¢ &L 4

‘/\

. &

e P —

Backtracking example

=

—]

¢ ¢ ¢ |

A/\

e &
—

s & {

- P —

Improving backtracking
efficiency

» General-purpose methods can give
huge gains in speed:
— Which variable should be assigned next?
— In what order should its values be tried?
— Can we detect inevitable failure early?

Most constrained variable

« Most constrained variable:
choose the variable with the fewest legal

values

\1 'H ”“—L:

* a.k.a.
heuristic

a-h\._’-—ﬁ———p“v'— e S A i —WJ

. S

Most constraining variable

e e A N

 Tie-breaker among most constrained
variables

- Most constraining variable:

— choose the variable with the most
constraints on remaining variables

I —— —— e o San -

Least constraining value

o i A AN e

« Given a variable, choose the least
constraining value:

— the one that rules out the fewest values in the
remaining variables :

. .) “g% Allows 1 value for SA
2, ,“ -y ,‘\—lt<“g% Allows 0 values for SA

- Combining these heuristics makes 1000
queens feasible

Forward checking

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal values

L

WA NT Q NSW v SA T
ENFEENEENEENEEEIESEIEYDE

—
Rt

p P —

Forward checking

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal values

g

WA NT Q NSW v SA T
EVEENEENEENEENE|ENE|EYDE
B S"EENEENEEYE| NEEYE

p P —

Forward checking

o . I— el AP

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal values

.

WA

L

4

—"\—Lb—"\—"&-

Q

NSW

Vv

SA

T

i

Forward checking

o . I— el AP

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal values |

\—L: _"\—L;—_"_LE-_"_LE-

WA

NT

Q

NSW

Vv

SA

T

ENEENEENE|ENEEEENEIEYDE :
B "EENEENEEYE| NE|BEE

[BTN EET R 1L N

. Hm . 0/

Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all

failures:
_L

WA

—
\

NT

Q

NSW

—"\—Lt—"\—"&-

Vv

SA

T

NT and SA cannot both be blue!
repeatedly enforces constraints locally

Arc consistency

- Simplest form of propagation makes each arc

« X =2>Yis consistent iff

for every value x of X there is some allowed y

SSEN S Ea S

WA NT Q NSW v SA T
. EfAT D EENE EENE

E—— R TR

Arc consistency

- Simplest form of propagation makes each arc

- X =2>YIs consistent Ift
for every value x of X there is some allowed y

\—L:_"\—Lb_"\—LE
L I e 1T immmLTT
\9/

e I—— AN AN I

Arc consistency

- Simplest form of propagation makes each arc

« X =2>Yis consistent iff

for every value x of X there is some allowed y

SSEA SSEa o
L NTI ; lewmx:I SAI I;l
\(/

If X loses a value, neighbors of X need to be
rechecked

Arc consistency

Simplest form of propagation makes each arc
X 2 Yis consistent iff
for every value x of Xthere is some allowed y

O g

_\
WA NT Q NSW Vv SA T
[E[E e xDx .) (T 1

‘< —
If X loses a value, neighbors of X need to be rechecked *
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment /‘{-\

h.’*_.__pc._,— e e —a—-/“»~-—~—e~¢—~»4\w-‘w

e e A N

I —— —— e o - -

Arc consistency algorithm AC-3 Z
{
|

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, X, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp :
while queue is not empty do
(Xi, X;) 4 REMOVE-FIRST(queue)]
if RM-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;] do
add (X, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed +— false

for each zin DoMAIN[X;]| do
if no value y in DOMAIN[X]] allows (z,y) to satisfy constraint(X;, X;)

i
then delete z from DOMAIN[X;]; removed + true I
return removed

« Time complexity: O(n2d3)

. —————— —

Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete"
states, I.e., all variables assigned

e s

- To apply to CSPs:
— allow states with unsatisfied constraints
— operators reassign variable values

P T m————

- Variable selection: randomly select any conflicted variable

« Value selection by min-conflicts heuristic:
— choose value that violates the fewest constraints }
— i.e., hill-climb with h(n) = total number of violated constraints

~ Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Actions: move queen in column

Goal test: no attacks

cvaluation: A(n) = number of attacks

I |

¥ ‘!

h= h=2 h=0

ot v I —

« Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

Ot A

AP

Summary

- CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values

- Backtracking = depth-first search with one variable assigned per node
« Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

A St i o .

- Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

+ lterative min-conflicts is usually effective in practice ik

b2 - e e i T e e S -w"‘——‘f\-—a‘hﬂ-WJ

