Search

Dr. Melanie Martin

CS 4480
September 15, 2010
Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Best-first search

- Idea: use an evaluation function $f(n)$ for each node
- estimate of "desirability"
\rightarrow Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
- greedy best-first search
- A* search

Heuristic

- Problem solving by experimental methods
- Trial and error
- Heuristic function h(n)
- Takes node as input
- Depends only on state of node
- Estimated cost of cheapest path from node n to a goal node
- Numerical estimate of the "goodness" of a state

Greedy best-first search

- Evaluation function $f(n)=h(n)$ (heuristic)
= estimate of cost from n to goal
- e.g., $h_{S L D}(n)=$ straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy bestfirst search

- Complete? No - can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
- Time? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
- Space? $O\left(b^{m}\right)$-- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n)=g(n)+h(n)$
- $g(n)=$ cost so far to reach n
- $h(n)=$ estimated cost from n to goal
- $f(n)=$ estimated total cost of path through n to goal

Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^{*}(n)$, where $h^{*}(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{S L D}(n)$ (never overestimates the actual road distance)
- Theorem: If $h(n)$ is admissible, A^{*} using TREESEARCH is optimal

Optimality of A* (proof)

- Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f\left(G_{2}\right)=g\left(G_{2}\right)$
- $g\left(G_{2}\right)>g(G)$
- $f(G)=g(G)$
- $f\left(G_{2}\right)>f(G)$
since $h\left(\mathrm{G}_{2}\right)=0$
since G_{2} is suboptimal
since $h(\mathrm{G})=0$
from above

Optimality of A^{*} (proof)

- Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f\left(G_{2}\right)$

$$
>f(G)
$$

from above

- $\mathrm{h}(\mathrm{n})$

$$
\leq h^{\wedge \star}(n)
$$

since h is admissible

- $g(n)+h(n) \quad \leq g(n)+h^{*}(n)$
- $f(n) \quad \leq f(G)$

Hence $f\left(G_{2}\right)>f(n)$, and A^{*} will never select G_{2} for expansion

Consistent heuristics

- A heuristic is consistent if for every node n, every successor n^{\prime} of n generated by any action a,

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

- If h is consistent, we have
$f\left(n^{\prime}\right) \quad=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$

$$
\begin{aligned}
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

- i.e., $f(n)$ is non-decreasing along any path.

Theorem: If $h(n)$ is consistent, A^{*} using GRAPH-SEARCH is optimal

Optimality of \mathbf{A}^{*}

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f=f_{i j}$, where $f_{i}<f_{i+1}$

Properties of A^{*}

- Complete? Yes (unless there are infinitely many nodes with $\mathrm{f} \leq f(G)$)
- Time? Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $\quad h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)
- $h_{1}(S)=?$
- $\underline{h}_{2}(S)=$?

Start State

Goal State

Admissible heuristics

E.g., for the 8-puzzle:

- $\quad h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

- $\underline{h}_{1}(\mathrm{~S})=$? 8
- $\underline{h}_{2}(S)=? 3+1+2+2+2+3+3+2=18$

Goal State

Dominance

- If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible)
- then h_{2} dominates h_{1}
- h_{2} is better for search
- Typical search costs (average number of nodes expanded):
- $d=12 \quad$ IDS $=3,644,035$ nodes

$$
\mathrm{A}^{*}\left(\mathrm{~h}_{1}\right)=227 \text { nodes }
$$

$$
A^{*}\left(h_{2}\right)=73 \text { nodes }
$$

- $d=24 \quad$ IDS $=$ too many nodes

$$
\mathrm{A}^{*}\left(\mathrm{~h}_{1}\right)=39,135 \text { nodes }
$$

$$
\mathrm{A}^{*}\left(\mathrm{~h}_{2}\right)=1,641 \text { nodes }
$$

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

