
Search
Dr. Melanie Martin

CS 4480
September 15, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/



Outline
• Best-first search
• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms



Best-first search
• Idea: use an evaluation function f(n) for each node

– estimate of "desirability"
Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of
desirability

• Special cases:
– greedy best-first search
– A* search



Heuristic
• Problem solving by experimental methods

– Trial and error
• Heuristic function h(n)

– Takes node as input
– Depends only on state of node
– Estimated cost of cheapest path from node n to a

goal node
– Numerical estimate of the “goodness” of a state



Greedy best-first search
• Evaluation function f(n) = h(n) (heuristic)
      = estimate of cost from n to goal
• e.g., hSLD(n) = straight-line distance

from n to Bucharest
• Greedy best-first search expands the

node that appears to be closest to goal



Properties of greedy best-
first search

• Complete? No – can get stuck in loops,
e.g., Iasi  Neamt  Iasi  Neamt 

• Time? O(bm), but a good heuristic can
give dramatic improvement

• Space? O(bm) -- keeps all nodes in
memory

• Optimal? No



A* search
• Idea: avoid expanding paths that are

already expensive
• Evaluation function f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path

through n to goal



Admissible heuristics
• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the
goal state from n.

• An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual
road distance)

• Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal



Optimality of A* (proof)
• Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G.

• f(G2)  = g(G2) since h(G2) = 0
• g(G2) > g(G) since G2 is suboptimal
• f(G)   = g(G) since h(G) = 0
• f(G2)  > f(G) from above



Optimality of A* (proof)
• Suppose some suboptimal goal G2 has been generated and is in the fringe. Let n be

an unexpanded node in the fringe such that n is on a shortest path to an optimal goal
G.

• f(G2) > f(G) from above
• h(n) ≤ h^*(n) since h is admissible
• g(n) + h(n) ≤ g(n) + h*(n)
• f(n) ≤ f(G)
Hence f(G2) > f(n), and A* will never select G2 for expansion



Consistent heuristics
• A heuristic is consistent if for every node n, every successor n'

of n generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have
f(n') = g(n') + h(n')
      = g(n) + c(n,a,n') + h(n')
      ≥ g(n) + h(n)
      = f(n)
• i.e., f(n) is non-decreasing along any path.
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is

optimal



Optimality of A*

• A* expands nodes in order of increasing f value
• Gradually adds "f-contours" of nodes
• Contour i has all nodes with f=fi, where fi < fi+1



Properties of A*
• Complete? Yes (unless there are

infinitely many nodes with f ≤ f(G) )
• Time? Exponential
• Space? Keeps all nodes in memory
• Optimal? Yes



Admissible heuristics
E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ?
• h2(S) = ?



Admissible heuristics
E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18



Dominance
• If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1
• h2 is better for search

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes



Relaxed problems
• A problem with fewer restrictions on the actions is

called a relaxed problem
• The cost of an optimal solution to a relaxed problem

is an admissible heuristic for the original problem
• If the rules of the 8-puzzle are relaxed so that a tile

can move anywhere, then h1(n) gives the shortest
solution

• If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest
solution



Local search algorithms
• In many optimization problems, the path to the goal is

irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-

queens

• In such cases, we can use local search algorithms
– keep a single "current" state, try to improve it


