Search

Dr. Melanie Martin CS 4480 September 13, 2010 Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Material

- Chapter 4 Section 1 3
- Exclude memory-bounded heuristic search

Outline

- Best-first search
- Greedy best-first search
- A^{*} search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Review: Tree search

 A search strategy is defined by picking the order of node expansion

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree

Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
- Implementation:
 - Order the nodes in fringe in decreasing order of desirability
- Special cases:
 - greedy best-first search
 - A^{*} search

Romania with step costs in km

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy bestfirst search

- Complete? No can get stuck in loops,
 e.g., lasi → Neamt → lasi → Neamt →
- <u>Time?</u> O(b^m), but a good heuristic can give dramatic improvement
- <u>Space?</u> O(b^m) -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- g(n) = cost so far to reach n
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

A* search example

A* search example

A* search example

