Search

Dr. Melanie Martin
CS 4480
September 8, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

O~ —

Search strategies

- A search strategy is defined by picking the order of node
expansion
- Strategies are evaluated along the following dimensions:
: does it always find a solution if one exists?
: number of nodes generated
: maximum number of nodes in memory
: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution é
— m: maximum depth of the state space (may be «)

— —— — e .

* - S T —— T e S — N TR -Mﬁ*m%—wﬁw J

Uninformed search 1
strategies

- Uninformed search strategies use only the
information available in the problem definition

 Breadth-first search
 Uniform-cost search E
- Depth-first search 1
« Depth-limited search

terative deepening search

Breadth-first search

- Expand shallowest unexpanded node

— fringe is a FIFO queue, i.e., new

Succe

*.»——-94—-,— IS —— -

>

o ——— ittt

Breadth-first search

- Expand shallowest unexpanded node

: fringe is a FIFO
gueue, i.e., new successors go at end

> (©

. o ——— e e e ot — e’ |

o ——— ittt

Breadth-first search

- Expand shallowest unexpanded node

. fringe is a FIFO queue,
l.e., new successors go at end

o ——— ittt

Breadth-first search

- Expand shallowest unexpanded node

. fringe is a FIFO queue,

l.e., new successors go at end

e —— A e A I e

S —

Properties of breadth-first |
search

- Complete? Yes (if b is finite)
» Time? 1+b+bP+b3+... +b? + b(b?-1) = O(b9+1)

- Space? O(b+!) (keeps every node in
memory)

« Optimal? Yes (if cost = 1 per step)

- Space is the bigger problem (more than time) |

/’T‘

* - S T —— T e S — N TR -Mﬁ*m%—wﬁw J

Uniform-cost search

Expand least-cost unexpanded node

— fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost = €

Time? # of nodes with g < cost of optimal solution, O(bceiing(C7e))
where C' is the cost of the optimal solution

Space? # of nodes with g < cost of optimal solution, O(bceling(C*
8))
Optimal? Yes — nodes expanded in increasing order of g(n)

e e

P F——— — e - .

:

i

/’7‘

3 —— e —— -Wﬂm—of\—_—‘&—ﬂ-w e

g

Depth-first search

- Expand deepest unexpanded node

R ———— B

— fringe = LIFO queue, i.e., put successors at front ?

¥o

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

4

e o —— A

Depth-first search

e o —— A

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

Depth-first search

e o —— A

- Expand deepest unexpanded node

T, T —

— fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

i I— AP A

g, o T —

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

Depth-first search

e e

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

P F——— — e - .

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

PR S N— -

Lt e s e e S e i *'W«MJ

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node

— fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

. e s

Complete? No: fails in infinite-depth spaces, spaces
with loops

— Modify to avoid repeated states along path
- complete in finite spaces

{
- Time? O(b™): terrible if m is much larger than d E
7 I

— but if solutions are dense, may be much faster than
breadth-first

- Space? O(bm), i.e., linear space! |
- Optimal? No

Depth-limited search

= depth-first search with depth limit /,
l.e., nodes at depth / have no successors

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? « false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? — true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

B

Iterative deepening search

e —— A e A I e

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure

inputs: problem, a problem

for depth< 0 to oo do ‘

result < DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Iterative deepening search /=0

-

S DUIPSEEIL

t

Iterative deepening search /=1 ;

Limt=1 »@®

T N

:
f

t

Iterative deepening search /=2

{
wen

it = 2 'O

o /<'>\ e

é

o

Iterative deepening search /=3

RS PSPPSR

® G @ G @ G
g © @ ©
,,,,,) cJo f
@ @ © @ :
@ G ® © ® G ® G
g ® o G G %)
0) Gy) oXole)
® © ®
G G
D Gy @ o oXo

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d
with branching factor b:

Npg=b°+b" +b% + ... + b%2 + b*7 + b7

Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

Nps = (d+1)b°% + d bAT + (d-1)b”2 + ... + 3b92 +2b%1 + 1bd
Eorb ="0-d =5
— Nps=1+10+100 + 1,000 + 10,000 + 100,000 = 111,111
— N,ps =6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

S s N

Properties of iterative
deepening search

« Complete? Yes

» Time? (d+1)b° +d b’ + (d-1)b? + ... + b? |
= O(b9) |

» Space? O(bd) {

» Optimal? Yes, if step cost = 1

IR oy L e — -W"**\-—"‘-"‘W o~ \’-"J

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First ~ Limited Deepening
Complete? Yes Yes No No Yes
Time O(b*Y) O@plC/dy o@p™) O®) O(b?)
Space OB#Y) O@®IC/dy O(bm) O@®l) O(bd)
Optimal? Yes Yes No No Yes

P S N

Repeated states

 Failure to detect repeated states can
turn a linear problem into an
exponential one!

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed+— an empty set

. —— AN A

fringe « INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe) |
loop do

!
if fringe is empty then return failure
node — REMOVE- FRONT(fringe)

if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node] is not in closed then

add STATE[node| to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

Summary

e

- Problem formulation usually requires abstracting
away real-world details to define a state space that
can feasibly be explored

- Variety of uninformed search strategies E
- lterative deepening search uses only linear space

and not much more time than other uninformed
algorithms é

Coming Next

- Homework: 3.7 a, c; 3.8: 3.9
» Getting book lisp code running
- Reading Chapter 4 in R&N

*W‘-_’_ e S A e S T St S I A ‘“‘—“‘”""—""\-—"“"_W T ‘J"

4 e S

