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Problem types

-> single-state problem
— Agent knows exactly which state it will be in; solution is a sequence

—> sensorless problem (conformant problem)
— Agent may have no idea where it is; solution is a sequence

—> contingency
problem

— percepts provide new information about current state
— often interleave} search, execution

—> exploration problem
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Example: vacuum world

. start in #5.

Solution?
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Example: vacuum world

. start in #5.

Solution? [Right, Suck]

start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
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Example: vacuum world
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start In

{1,2,3,4,5,6,7,8} e.q., - |- ol L |
Right goes to {2,4,6,8} |
Solution? 3 | “las | =B
[Right,Suck,Left,Suck] 5
l
5 | .=l 6 =) |
R 2R :

7 | =) 8 =)
— Nondeterministic: Suck may il

dirty a clean carpet
— Partially observable: location, dirt at current location.

— Percept: [L, Clean], i.e., start in #5 or #7 A1

Solution? //////”I‘
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Example: vacuum world

- 1 [ =) 2 =]
start in |
(1,2,3,4,5,6,7,8) e.g., - |- wdb B
Right goes to {2,4,6,8} |
Solution? 3 f 4 - |
[Right,Suck,Left,Suck] j
l
5 | .=l 6 =) |
FR oFR I
— Nondeterministic: Suckmay 7 |.=ff} 8 =)
dirty a clean carpet é
— Partially observable: location, dirt at current location.
— Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck] 5




Single-state problem
formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
actions or successor function S(x) = set of action—state pairs
— e.g., S(Arad) ={<Arad 2> Zerind, Zerind>, ... }
3. goal test, can be
— explicit, e.g., x = "at Bucharest"
— implicit, e.g., Checkmate(x)
4. path cost (additive)
— e.g., sum of distances, number of actions executed, etc.
— c¢(x,a,y)is the . assumed to be =0

- A solution is a sequence of actions leading from the initial state to a
goal state
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Selecting a state space

- Real world is absurdly complex

—> state space must be abstracted for problem solving
« (Abstract) state = set of real states |
- (Abstract) action = complex combination of real actions i

— e.g., "Arad - Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

- For guaranteed realizability, real state "in Arad“ must get to {
some real state "in Zerind"

« (Abstract) solution =
— set of real paths that are solutions in the real world

- Each abstract action should be "easier" than the original
problem




Vacuum world state space
graph
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Vacuum world state space
graph
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- states? integer dirt and robot location

- actions? Left, Right, Suck

« goal test? no dirt at all locations

- path cost? 1 per action




Example: The 8-puzzle
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8 3 1
Start State

- states?

- actions?

« goal test?
« path cost?
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Example: The 8-puzzle

7 Il 21|l 4 1 2
5 6 3|l 4| 5
g (|| 3|l 1 6 || 7 ||l 8 ’

Start State Goal State ‘

states? locations of tiles 1
actions? move blank left, right, up, down
goal test? = goal state (given) é
path cost? 1 per move |
!

[Note optimal solutlon of n-PuzzIe family is NP- haW
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Example: robotic assembly
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- states?: real-valued coordinates of robot joint angles

parts of the object to be assembled

- actions?: continuous motions of robot joints i

+ goal test?: complete assembly
- path cost?: time to execute
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Tree search algorithms

« Basic idea:

— offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
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Tree search example
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Tree search example
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Tree search example
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Implementation: general tree
search

function TREE-SEARCH( problem, fringe) returns a solution, or failure

fringe +— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do l‘

if fringe is empty then return failure
node < REMOVE-FRONT( fringe) :
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node) "
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION|[s| <— action, STATE[s] < result i
PATH-COST[$] +— PATH-COST[node] + STEP-COST(no0de, action, s)
DEPTH[s] +— DEPTH[node] + 1
add s to successors

return successors
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Implementation: states vs. nodes

- A state is a (representation of) a physical configuration

e e

- A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

parent, action
A

State || 5
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Node depth = 6
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- The Expand function creates new nodes, filling in the various

fields and using the SuccessorFn of the problem to create the
corresponding states.
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Search strategies

- A search strategy is defined by picking the order of node
expansion
- Strategies are evaluated along the following dimensions:
: does it always find a solution if one exists?
: number of nodes generated
: maximum number of nodes in memory
: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution é
— m: maximum depth of the state space (may be «)

— —— — e .

* - S T —— T e S — N TR -Mﬁ*m%—wﬁw J



