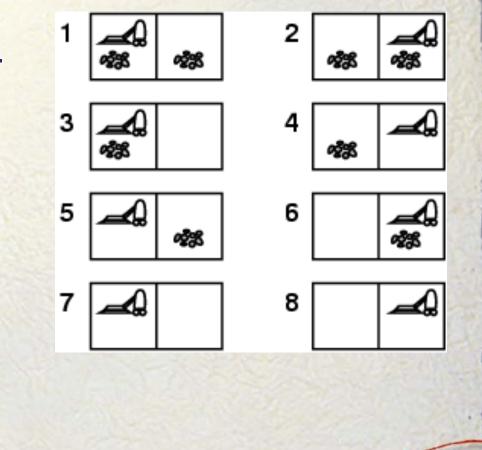
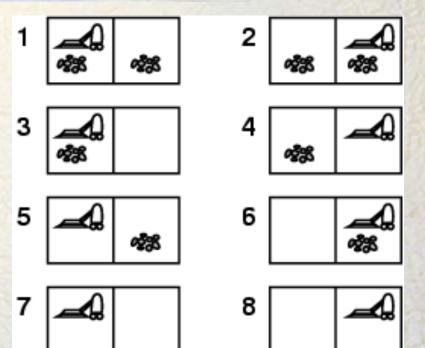
#### Search

Dr. Melanie Martin CS 4480 September 3, 2010 Based on slides from http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/


### **Problem types**

- - Agent knows exactly which state it will be in; solution is a sequence
- Non-observable 
   → sensorless problem (conformant problem)
  - Agent may have no idea where it is; solution is a sequence
- - percepts provide new information about current state
  - often interleave} search, execution
- Unknown state space  $\rightarrow$  exploration problem


Single-state, start in #5.
 Solution?



- Single-state, start in #5.
   Solution? [Right, Suck]
- Sensorless, start in {1,2,3,4,5,6,7,8} e.g., *Right* goes to {2,4,6,8}
   Solution?



 Sensorless, start in {1,2,3,4,5,6,7,8} e.g., *Right* goes to {2,4,6,8} <u>Solution?</u> [*Right*,*Suck*,*Left*,*Suck*]



- Contingency
  - Nondeterministic: Suck may dirty a clean carpet
  - Partially observable: location, dirt at current location.
  - Percept: [L, Clean], i.e., start in #5 or #7
     Solution?

7

 Sensorless, start in {1,2,3,4,5,6,7,8} e.g., *Right* goes to {2,4,6,8} <u>Solution?</u> [*Right*,Suck,Left,Suck]

| 1 | <b>Å</b> | 88<br>88     | 2 | <i>ค</i> รีสร               | <b>Å</b>       |
|---|----------|--------------|---|-----------------------------|----------------|
| 3 |          |              | 4 | <i>ค</i> รั <del>ก</del> ร์ | <b>_</b>       |
| 5 | <b>_</b> | <b>జి</b> శి | 6 |                             | <b>Å</b><br>** |
|   |          |              |   |                             |                |
|   |          |              |   |                             |                |

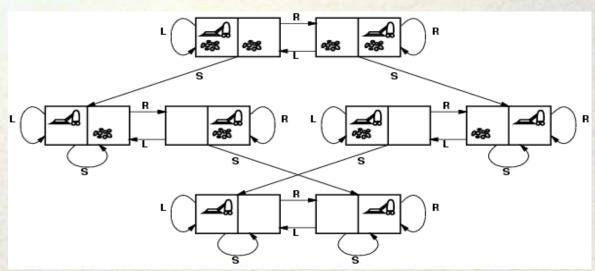
8

- Contingency
  - Nondeterministic: Suck may dirty a clean carpet
  - Partially observable: location, dirt at current location.
  - Percept: [L, Clean], i.e., start in #5 or #7
     <u>Solution?</u> [Right, if dirt then Suck]

# Single-state problem formulation

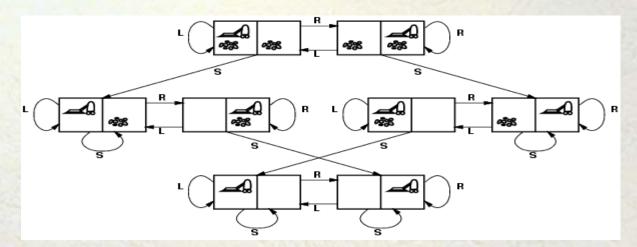
A problem is defined by four items:

- 1. initial state e.g., "at Arad"
- 2. actions or successor function S(x) = set of action-state pairs
  - e.g.,  $S(Arad) = \{ < Arad \rightarrow Zerind, Zerind >, ... \}$


#### 3. goal test, can be

- explicit, e.g., x = "at Bucharest"
- implicit, e.g., Checkmate(x)
- 4. path cost (additive)
  - e.g., sum of distances, number of actions executed, etc.
  - -c(x,a,y) is the step cost, assumed to be  $\ge 0$
  - A solution is a sequence of actions leading from the initial state to a goal state

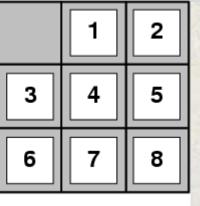
### Selecting a state space


- Real world is absurdly complex
  - → state space must be abstracted for problem solving
- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
  - e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution =
  - set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem

#### Vacuum world state space graph



- states?
- <u>actions?</u>
- goal test?
- path cost?

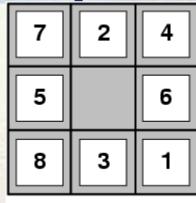

#### Vacuum world state space graph



- states? integer dirt and robot location
- actions? Left, Right, Suck
- goal test? no dirt at all locations
- path cost? 1 per action

### **Example: The 8-puzzle**

| 7 | 2 | 4 |
|---|---|---|
| 5 |   | 6 |
| 8 | 3 | 1 |




Start State

Goal State

- states?
- <u>actions?</u>
- goal test?
- path cost?

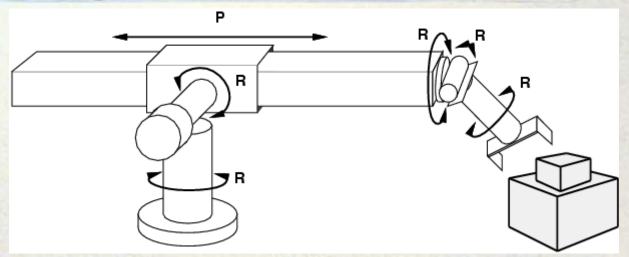
#### **Example: The 8-puzzle**





3

Start State


Goal State

4

- states? locations of tiles
- <u>actions?</u> move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move

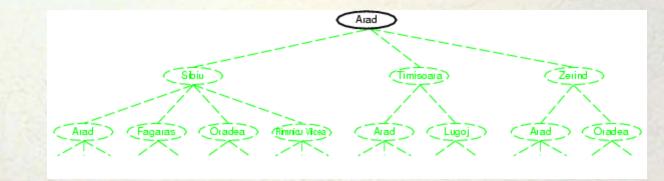
[Note: optimal solution of *n*-Puzzle family is NP-hard]

#### **Example: robotic assembly**

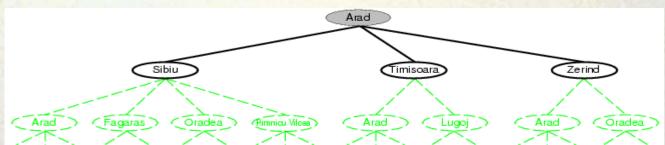


- <u>states?</u>: real-valued coordinates of robot joint angles parts of the object to be assembled
- <u>actions</u>: continuous motions of robot joints
- goal test?: complete assembly
- path cost?: time to execute

#### **Tree search algorithms**

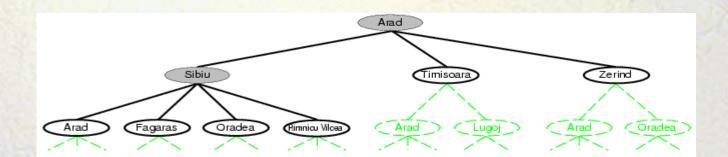

#### Basic idea:

 offline, simulated exploration of state space by generating successors of already-explored states (a.k.a.~expanding states)


function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree

#### **Tree search example**




#### **Tree search example**

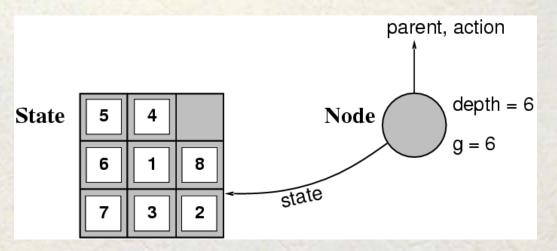




## **Tree search example**



# Implementation: general tree search


function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure  $node \leftarrow \text{REMOVE-FRONT}(fringe)$ if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node) fringe  $\leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$ 

function EXPAND( node, problem) returns a set of nodes  $successors \leftarrow$  the empty set for each action, result in SUCCESSOR-FN[problem](STATE[node]) do  $s \leftarrow$  a new NODE PARENT-NODE[s]  $\leftarrow$  node; ACTION[s]  $\leftarrow$  action; STATE[s]  $\leftarrow$  result PATH-COST[s]  $\leftarrow$  PATH-COST[node] + STEP-COST(node, action, s) DEPTH[s]  $\leftarrow$  DEPTH[node] + 1 add s to successors return successors

#### Implementation: states vs. nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree includes state, parent node, action, path cost g(x), depth



• The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

### **Search strategies**

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
  - completeness: does it always find a solution if one exists?
  - time complexity: number of nodes generated
  - space complexity: maximum number of nodes in memory
  - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
  - b: maximum branching factor of the search tree
  - d: depth of the least-cost solution
  - m: maximum depth of the state space (may be  $\infty$ )