
Search
Dr. Melanie Martin

CS 4480
September 3, 2010

Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/



Problem types
• Deterministic, fully observable  single-state problem

– Agent knows exactly which state it will be in; solution is a sequence

• Non-observable  sensorless problem (conformant problem)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable  contingency
problem
– percepts provide new information about current state
– often interleave} search, execution

• Unknown state space  exploration problem



Example: vacuum world
• Single-state, start in #5.

Solution?



Example: vacuum world
• Single-state, start in #5.

Solution? [Right, Suck]

• Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?



Example: vacuum world
• Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

• Contingency
– Nondeterministic: Suck may

dirty a clean carpet
– Partially observable: location, dirt at current location.
– Percept: [L, Clean], i.e., start in #5 or #7

Solution?



Example: vacuum world
• Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

• Contingency
– Nondeterministic: Suck may

dirty a clean carpet
– Partially observable: location, dirt at current location.
– Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]



Single-state problem
formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs

– e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }
3. goal test, can be

– explicit, e.g., x = "at Bucharest"
– implicit, e.g., Checkmate(x)

4. path cost (additive)
– e.g., sum of distances, number of actions executed, etc.
– c(x,a,y) is the step cost, assumed to be ≥ 0

• A solution is a sequence of actions leading from the initial state to a
goal state



Selecting a state space
• Real world is absurdly complex

 state space must be abstracted for problem solving
• (Abstract) state = set of real states
• (Abstract) action = complex combination of real actions

– e.g., "Arad  Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

• For guaranteed realizability, any real state "in Arad“ must get to
some real state "in Zerind"

• (Abstract) solution =
– set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original
problem



Vacuum world state space
graph

• states?
• actions?
• goal test?
• path cost?



Vacuum world state space
graph

• states? integer dirt and robot location
• actions? Left, Right, Suck
• goal test? no dirt at all locations
• path cost? 1 per action



Example: The 8-puzzle

• states?
• actions?
• goal test?
• path cost?



Example: The 8-puzzle

• states? locations of tiles
• actions? move blank left, right, up, down
• goal test? = goal state (given)
• path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]



Example: robotic assembly

• states?: real-valued coordinates of robot joint angles
parts of the object to be assembled

• actions?: continuous motions of robot joints
• goal test?: complete assembly
• path cost?: time to execute



Tree search algorithms
• Basic idea:

– offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)



Tree search example



Tree search example



Tree search example



Implementation: general tree
search



Implementation: states vs. nodes

• A state is a (representation of) a physical configuration
• A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

• The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create the
corresponding states.



Search strategies
• A search strategy is defined by picking the order of node

expansion
• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)


