
Inference in first-order
logic: just a taste

Dr. Melanie Martin
CS 4480

November 10, 2010
Based on slides from

http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Outline
• Reducing first-order inference to

propositional inference
• Unification
• Generalized Modus Ponens
• Forward chaining
• Backward chaining
• Resolution

Inference with Quantifiers
• Universal Instantiation:

– Given ∀X person(X) ⇒ likes(X, sun)
– Infer person(john) ⇒ likes(john,sun)

• Existential Instantiation:
– Given ∃x likes(x, sun)
– Infer: likes(S1, sun)
– S1 is a “Skolem Constant” that is not found anywhere else in

the KB and refers to (one of) the individuals that likes sun.

Universal instantiation (UI)
• Every instantiation of a universally quantified sentence is entailed by it:

∀v α

Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)
• For any sentence α, variable v, and constant symbol

k that does not appear elsewhere in the knowledge
base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a
Skolem constant

Reduction to propositional
inference

Suppose the KB contains just the following:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

 King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.
• Every FOL KB can be propositionalized so as to preserve entailment

• (A ground sentence is entailed by new KB iff entailed by original KB)

• Idea: propositionalize KB and query, apply resolution, return result

• Problem: with function symbols, there are infinitely many ground terms,
– e.g., Father(Father(Father(John)))

Reduction contd.
Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is

entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
 create a propositional KB by instantiating with depth-n terms
 see if α is entailed by this KB

Depth1: john, richard
Depth 2: father(john), father(richard)

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is
semidecidable (algorithms exist that say yes to every entailed
sentence, but no algorithm exists that also says no to every nonentailed
sentence.)

Problems with
propositionalization

• Propositionalization seems to generate lots of irrelevant sentences.

• E.g., from:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

• it seems obvious that Evil(John), but propositionalization produces lots
of facts such as Greedy(Richard) that are irrelevant

• With p k-ary predicates and n constants, there are p·nk instantiations.

Unification
• We can get the inference immediately if we can find a substitution θ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y,AJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,AJ)

Unification
• We can get the inference immediately if we can find a substitution θ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,AJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,AJ)

Unification
• We can get the inference immediately if we can find a

substitution θ such that King(x) and Greedy(x) match King(John)
and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,AJ) {x/AJ,y/John}}
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,AJ)

Unification
• We can get the inference immediately if we can find a

substitution θ such that King(x) and Greedy(x) match King(John)
and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,AJ) {x/AJ,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,AJ)

Unification
• We can get the inference immediately if we can find a substitution θ such that

King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,AJ) {x/AJ,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,AJ) {fail}

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,AJ)

Unification
When there is more than one unifier:

• To unify Knows(John,x) and Knows(y,z),
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.
– Fewer restrictions

• There is a single most general unifier (MGU) that is
unique up to renaming of variables.
MGU = { y/John, x/z }

Generalized Modus Ponens
• This is a general inference rule for FOL that

does not require instantiation
• GMP “lifts” MP from propositional to first-

order logic
• Key advantage of lifted inference rules over

propositionalization is that they make only
substitutions which are required to allow
particular inferences to proceed

p1ʼ,p2ʼ,...,pnʼ, (p1∧p2∧...∧pn⇒q)
qθ

where piʼθ=piθ ∀i
• p1ʼ is King(John) p1 is King(x)
• p2ʼ is Greedy(y) p2 is Greedy(x)
• Θ is {x/John,y/John} q is Evil(x)
• qθ is Evil(John)

GMP used with KB of definite clauses (exactly one
positive literal)

All variables assumed universally quantified

Example knowledge base
• The law says that it is a crime for an American to sell

weapons to hostile nations. The country Nono, an
enemy of America, has some missiles, and all of its
missiles were sold to it by Colonel West, who is
American.

• Prove that Col. West is a criminal

Example knowledge base
contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

Forward chaining algorithm

Forward chaining proof

Forward chaining proof

Forward chaining proof

Properties of forward
chaining

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions
• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is
semidecidable

Efficiency of forward
chaining

Incremental forward chaining: no need to match a rule
on iteration k if a premise wasn't added on iteration
k-1
⇒ match each rule whose premise contains a newly added

positive literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

– e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases

Backward chaining
algorithm

SUBST(COMPOSE(θ1, θ2), p) =
SUBST(θ2, SUBST(θ1, p))

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Properties of backward
chaining

• Depth-first recursive proof search: space is linear in
size of proof

• Incomplete due to infinite loops
– ⇒ fix by checking current goal against every goal on stack

• Inefficient due to repeated subgoals (both success
and failure)
– ⇒ fix using caching of previous results (extra space)

• Widely used for logic programming

Logic programming: Prolog
• Algorithm = Logic + Control

• Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ 60 million LIPS

• Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right backward chaining
• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
• Built-in predicates that have side effects (e.g., input and output
• predicates, assert/retract predicates)
• Closed-world assumption ("negation as failure")

– e.g., given alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails

Prolog
• Appending two lists to produce a third:

append([],Y,Y).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

• query: append(A,B,[1,2]) ?

• answers: A=[] B=[1,2]

 A=[1] B=[2]

 A=[1,2] B=[]

Resolution: brief summary
• Full first-order version:

l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn
(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.

• The two clauses are assumed to be standardized apart so that they
share no variables.

• For example,
¬Rich(x) ∨ Unhappy(x)
 Rich(Ken)

Unhappy(Ken)
with θ = {x/Ken}

• Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL

Conversion to CNF
• Everyone who loves all animals is loved by someone:

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

• 1. Eliminate biconditionals and implications
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

• 2. Move ¬ inwards: ¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p
∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

Conversion to CNF contd.
3. Standardize variables: each quantifier should use a different

one
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the

enclosing universally quantified variables:
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

5. Drop universal quantifiers:
 [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Resolution proof: definite
clauses

