First-Order Logic

Dr. Melanie Martin

CS 4480
November 5, 2010
Based on slides from
http://aima.eecs.berkeley.edu/2nd-ed/slides-ppt/

Detour: Some British History

- Richard the Lionheart
- Richard I (8 September 1157-6 April 1199) was King of England from 6 July 1189 until his death in 1199.
- Rebelled unsuccessfully against father Henry II
- Spoke very little English and mostly lived in Aquitaine
- Was a central Christian commander during the Third Crusade
- In his absence, brother John tries to seize throne, Richard forgives him

Syntax of FOL: Basic elements

- Constants KingJohn, 2, Pitt,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b, \ldots
- Connectives $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
- Equality
$=$
- Quantifiers \forall, \exists

BNF Grammar on p 247

```
Sentence }->\mathrm{ AtomicSentence 
    (Sentence Connective Sentence)
    Quantifier Variable, .. Sentence
    ~Sentence
AtomicSentence }->\mathrm{ Predicate(Term,...) | Term = Term
Term }->\mathrm{ Function(Term,...)|
    Constant |
    Variable
Connective }->->\mp@subsup{|}{}{\wedge}|v|<
Quantifier }->\mathrm{ all, exists
Constant }->\mathrm{ john, 1, ..
Variable }->\mathrm{ A, B, C, X
Predicate }->\mathrm{ breezy, sunny, red
Function }->\mathrm{ fatherOf, plus
```


Propositional Logic vs FOL

$\mathrm{B}_{23} \rightarrow\left(\mathrm{P}_{32} \vee \mathrm{P}_{23} \vee \mathrm{P}_{34} \vee \mathrm{P}_{43}\right) \ldots$
"Internal squares adjacent to pits are breezy":
All $X Y\left(B(X, Y)^{\wedge}(X>1)^{\wedge}(Y>1)^{\wedge}(Y<\right.$ 4) ^($(X<4)) \leftarrow \rightarrow$
$(P(X-1, Y) \vee P(X, Y-1) \vee P(X+1, Y) \vee$
($\mathrm{X}, \mathrm{Y}+1$))

FOL (FOPC) Worlds

- Rather than just T,F, now worlds contain:
- Objects: the gold, the wumpus, ...
- Predicates: holding, breezy
- Functions: sonOf

Ontological commitment

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols $\rightarrow \quad$ objects predicate symbols $\rightarrow \quad$ relations function symbols $\rightarrow \quad$ functional relation

Interpretation: assignment of elements from the world to elements of the language

- An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term ${ }_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Quantifiers

- All $X p(X)$ means that p holds for all elements in the domain
- Exists $X p(X)$ means that p holds for at least one element of the domain

Universal quantification

- $\forall<$ variables> <sentence>

Everyone at CSU is smart:
$\forall x \operatorname{At}(x, C S U) \Rightarrow \operatorname{Smart}(x)$

- $\forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn,CSU) \Rightarrow Smart(KingJohn)
$\wedge \mathrm{At}($ Richard,CSU) \Rightarrow Smart(Richard)
$\wedge A t(C S U, C S U) \Rightarrow$ Smart(CSU)
$\wedge \ldots$

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :
$\forall x \operatorname{At}(x, C S U) \wedge$ Smart(x)
means "Everyone is at CSU and everyone is smart"

Existential quantification

- ヨ<variables> <sentence>
- Someone at CSU is smart:
- $\exists x$ At(x,CSU) ^ Smart(x)
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn,CSU) ^ Smart(KingJohn)
\checkmark At(Richard,CSU) ^ Smart(Richard)
$\vee \operatorname{At}(C S U, C S U) \wedge$ Smart(CSU)
v ...

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \operatorname{At}(x, C S U) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at CSU!
Transform to:
$\exists x \sim(\operatorname{At}(x, C S U)) \vee \operatorname{Smart}(x)$

Examples

- Everyone likes chocolate
- Someone likes chocolate
- Everyone likes chocolate unless they are allergic to it

Examples

- Everyone likes chocolate
- $\forall X$ person $(X) \rightarrow$ likes $(X$, chocolate)
- Someone likes chocolate
- ヨX person $(X)^{\wedge}$ likes (X, chocolate)
- Everyone likes chocolate unless they are allergic to it
$-\forall X\left(\right.$ person $(X)^{\wedge} \neg$ allergic $(X$, chocolate $\left.)\right) \rightarrow$
likes(X, chocolate)

Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y$ Loves (x, y)
- "There is a person who loves everyone in the world"
- $\forall y \exists x$ Loves (x, y)
- "Everyone in the world is loved by at least one person"

Nesting of Variables

Put quantifiers in front of $\operatorname{likes}(P, F)$
Assume the domain of discourse of P is the set of people
Assume the domain of discourse of F is the set of foods

1. Everyone likes some kind of food
2. There is a kind of food that everyone likes
3. Someone likes all kinds of food
4. Every food has someone who likes it

Answers (DOD of P is people and F is food)

Everyone likes some kind of food $\forall \mathrm{P}, \exists \mathrm{F}$ likes(P,F)
There is a kind of food that everyone likes
$\exists \mathrm{F}, \forall \mathrm{P}$ likes (P, F)
Someone likes all kinds of food
$\exists \mathrm{P}, \forall \mathrm{F}$ likes(P,F)
Every food has someone who likes it
$\forall F, \exists P$ likes (P, F)

Answers, without Domain of Discourse Assumptions

Everyone likes some kind of food $\forall P$ person $(P) \rightarrow \exists F$ food (F) and likes (P, F)
There is a kind of food that everyone likes $\exists \mathrm{F}$ food (F) and $(\forall \mathrm{P}$ person $(\mathrm{P}) \rightarrow$ likes (P, F))
Someone likes all kinds of food $\exists P$ person (P) and ($\forall F$ food $(F) \rightarrow$ likes $(P, F))$
Every food has someone who likes it
$\forall F$ food $(F) \rightarrow \exists P$ person (P) and likes (P, F)

Quantification and Negation

－$\neg \exists x p(x)$ equiv $\forall x \neg p(x)$
－っヨx likes（x，parsnips）
－$\forall x$ ᄀlikes（x，parsnips）
－$\neg \forall x p(x)$ equiv $\exists x \neg p(x)$
$-\neg \forall x$ likes（x，parsnips）
－$\exists x \neg$ likes（ x ，parsnips）
－Quantifier duality：each can be expressed using the other
－$\forall x$ Likes（x，IceCream）$\neg \exists x \neg$ Likes（x，IceCream）
－ヨx Likes（x，Broccoli）$\neg \forall x \neg$ Likes（x，Broccoli）

Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term and $_{1}$ term ${ }_{2}$ refer to the same object
- E.g., definition of Sibling in terms of Parent: $\forall x, y$ Sibling $(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge$ Parent (f, y)]

